
Darbhanga College of Engineering
Computer Science & Engineering
Subject:- Computer Organization &Architecture

 4th Semester CSE (Question Paper)

 Module 1

1. What is Computer Architecture ?

Ans: Computer architecture is a specification describing how hardware and software technologies

interact to create a computer platform or system. When we think of the word architecture, we think of

building a house or a building. Keeping that same principle in mind, computer architecture involves

building a computer and all that goes into a computer system. Computer architecture consists of three

main categories.

 System design – This includes all the hardware parts, such as CPU, data processors, multiprocessors,

memory controllers and direct memory access. This part is the actual computer system.

 Instruction set architecture – The includes the CPU’s functions and capabilities, the CPU’s

programming language, data formats, processor register types and instructions used by computer

programmers. This part is the software that makes it run, such as Windows or Photoshop or similar

programs.

 Microarchitecture – This defines the data processing and storage element or data paths and how they

should be implemented into the instruction set architecture. These might include DVD storage

devices or similar devices.

2. What are the three categories of Computer Architecture ?

Ans: . Computer architecture consists of three main categories.

 System design – This includes all the hardware parts, such as CPU, data processors, multiprocessors,

memory controllers and direct memory access. This part is the actual computer system.

 Instruction set architecture – The includes the CPU’s functions and capabilities, the CPU’s

programming language, data formats, processor register types and instructions used by computer

programmers. This part is the software that makes it run, such as Windows or Photoshop or similar

programs.

 Microarchitecture – This defines the data processing and storage element or data paths and how they

should be implemented into the instruction set architecture. These might include DVD storage

devices or similar devices.

3. What are the common Components of a Microprocessor?

Ans: Some of the common components of a microprocessor are:

 Control Unit.

 I/O Units.

 Arithmetic Logic Unit (ALU)

 Registers.

 Cache.

4. How Computer Architecture different from a Computer Organization?

Ans: Computer Architecture

Computer Architecture is a blueprint for design and implementation of a computer system. It

provides the functional details and behaviour of a computer system and comes before computer

organization. Computer architecture deals with 'What to do?'

Computer Organization

Computer Organization is how operational parts of a computer system are linked together. It

implements the provided computer architecture. Computer organization deals with 'How to do?'

Following are some of the important differences between Computer Architecture and Computer

Organization.

Sr.

No.

Key Computer

Architecture

Computer

Organization

1

Purpose Computer

architecture

explains what a

computer should

do.

Computer

organization explains

how a computer

works.

2

Target Computer

architecture

provides functional

behavior of

computer system.

Computer

organization provides

structural

relationships between

parts of computer

system.

3

Design Computer

architecture deals

with high level

design.

Computer

organization deals

with low level

design.

4

Actors Actors in

Computer

architecture are

hardware parts.

Actor in computer

organizaton is

performance.

5

Order Computer

architecture is

designed first.

Computer

organization is

started after

finalizing computer

architecture.

5. What are the various Interrupts in a Microprocessor system?

Ans: Interrupts are the signals generated by the external devices to request the microprocessor to

perform a task. There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR.

Interrupt are classified into following groups based on their parameter −

 Vector interrupt − In this type of interrupt, the interrupt address is known to the processor. For

example: RST7.5, RST6.5, RST5.5, TRAP.

 Non-Vector interrupt − In this type of interrupt, the interrupt address is not known to the processor

so, the interrupt address needs to be sent externally by the device to perform interrupts. For

example: INTR.

 Maskable interrupt − In this type of interrupt, we can disable the interrupt by writing some

instructions into the program. For example: RST7.5, RST6.5, RST5.5.

 Non-Maskable interrupt − In this type of interrupt, we cannot disable the interrupt by writing some

instructions into the program. For example: TRAP.

 Software interrupt − In this type of interrupt, the programmer has to add the instructions into the

program to execute the interrupt. There are 8 software interrupts in 8085, i.e. RST0, RST1, RST2,

RST3, RST4, RST5, RST6, and RST7.

 Hardware interrupt − There are 5 interrupt pins in 8085 used as hardware interrupts, i.e. TRAP,

RST7.5, RST6.5, RST5.5, INTA.

Note − NTA is not an interrupt, it is used by the microprocessor for sending acknowledgement.

TRAP has the highest priority, then RST7.5 and so on.

6. List out the types of bus.

Ans: Bus is a group of conducting wires which carries information, all the peripherals are connected to

microprocessor through Bus.

Diagram to represent bus organization system of 8085 Microprocessor.

There are three types of buses.

1. Address bus –

It is a group of conducting wires which carries address only.Address bus is unidirectional because

data flow in one direction, from microprocessor to memory or from microprocessor to Input/output

devices (That is, Out of Microprocessor).

Length of Address Bus of 8085 microprocessor is 16 Bit (That is, Four Hexadecimal Digits), ranging

from 0000 H to FFFF H, (H denotes Hexadecimal). The microprocessor 8085 can transfer maximum

16 bit address which means it can address 65, 536 different memory location.

The Length of the address bus determines the amount of memory a system can address.Such as a

system with a 32-bit address bus can address 2^32 memory locations.If each memory location holds

one byte, the addressable memory space is 4 GB.However, the actual amount of memory that can be

accessed is usually much less than this theoretical limit due to chipset and motherboard limitations.

2. Data bus –

It is a group of conducting wires which carries Data only.Data bus is bidirectional because data flow

in both directions, from microprocessor to memory or Input/Output devices and from memory or

Input/Output devices to microprocessor.

Length of Data Bus of 8085 microprocessor is 8 Bit (That is, two Hexadecimal Digits), ranging from

00 H to FF H. (H denotes Hexadecimal).

When it is write operation, the processor will put the data (to be written) on the data bus, when it is

read operation, the memory controller will get the data from specific memory block and put it into

the data bus.

The width of the data bus is directly related to the largest number that the bus can carry, such as an 8

bit bus can represent 2 to the power of 8 unique values, this equates to the number 0 to 255.A 16 bit

bus can carry 0 to 65535.

3. Control bus –

It is a group of conducting wires, which is used to generate timing and control signals to control all

the associated peripherals, microprocessor uses control bus to process data, that is what to do with

selected memory location. Some control signals are:

 Memory read

 Memory write

 I/O read

 I/O Write

 Opcode fetch

If one line of control bus may be the read/write line.If the wire is low (no electricity flowing) then the

memory is read, if the wire is high (electricity is flowing) then the memory is written.

7. Define Program Counter.

Ans: A program counter is a register in a computer processor that contains the address (location) of

the instruction being executed at the current time.

8. Why we have the types of Registers?

Ans: In Computer Architecture, the Registers are very fast computer memory which are used to

execute programs and operations efficiently. This does by giving access to commonly used values,

i.e., the values which are in the point of operation/execution at that time. So, for this purpose, there

are several different classes of CPU registers which works in coordination with the computer

memory to run operations efficiently.

These are classified as given below.

 Accumulator:

This is the most frequently used register used to store data taken from memory. It is in different

numbers in different microprocessors.

 Memory Address Registers (MAR):

It holds the address of the location to be accessed from memory. MAR and MDR (Memory Data

Register) together facilitate the communication of the CPU and the main memory.

 Memory Data Registers (MDR):

It contains data to be written into or to be read out from the addressed location.

 General Purpose Registers:

These are numbered as R0, R1, R2….Rn, and used to store temporary data during any ongoing

operation. Its content can be accessed by assembly programming.

 Program Counter (PC):

Program Counter (PC) is used to keep the track of execution of the program. It contains the memory

address of the next instruction to be fetched. PC points to the address of the next instruction to be

fetched from the main memory when the previous instruction has been successfully completed.

Program Counter (PC) also functions to count the number of instructions.

 Instruction Register (IR):

It is the register which holds the instruction which is currently been executed.

So, these are the different registers which are operating for a specific purpose.

9. What is Number Representation?

Ans: When working with any kind of digital electronics in which numbers are being represented, it is

important to understand the different ways numbers are represented in these systems. Almost without

fail, numbers are represented by two voltage levels which can represent a one or a zero (an interesting

exception to this rule is the new memory device recently announced by Intel which uses one of four

possible voltage levels, thereby increasing the amount of information that can be stored in a given

space). The number system based on ones and zeroes is called the binary system (because there are only

two possible digits). Before discussing the binary system, a review of the decimal (ten possible digits)

system is in order, because many of the concepts of the binary system will be easier to understand when

introduced alongside their decimal counterpart.

You should all have some familiarity with the decimal system. For instance, to represent the positive

integer one hundred and twenty-five as a decimal number, we can write (with the postivie sign implied).

The subscript 10 denotes the number as a base 10 (decimal) number.

12510 = 1*100 + 2*10 + 5*1 = 1*102 + 2*101 + 5*100

10. What is 2’s complement method and give few examples?

Ans: Two's complement is a mathematical operation on binary numbers, and is an example of a

radix complement. It is used in computing as a method of signed number representation. The two's

complement of an N-bit number is defined as its complement with respect to 2
N
.

 For example, 2's complement of “01000” is “11000” (Note that we first find one's complement of

01000 as 10111). If there are all 1's (in one's complement), we add an extra 1 in the string.

For example, 2's complement of “000” is “1000” (1's complement of “000” is “111”).

11. Define Floating point representation of numbers.

Ans: The term floating point refers to the fact that a number's radix point (decimal point, or, more

commonly in computers, binary point) can "float"; that is, it can be placed anywhere relative to the

significant digits of the number.

 In computers, floating-point numbers are represented in scientific notation of fraction (F) and

exponent (E) with a radix of 2, in the form of F×2^E . Both E and F can be positive as well as negative.

Modern computers adopt IEEE 754 standard for representing floating-point numbers.

12. Difference between Signed magnitude and 2’s complement?

Ans:

SIGNED MAGNITUDE METHOD 2’S COMPLEMENT METHOD

It is a method to denote fixed point signed

numbers.

It is also used to denote fixed

point signed numbers.

Number is divided into two parts.

Number is considered as a

whole.

Sign bit is considered explicitly.

Sign bit is not considered

explicitly.

Additional hardware is required for No additional hardware is

SIGNED MAGNITUDE METHOD 2’S COMPLEMENT METHOD

resultant sign of arithmetic. required in 2’s complement

method.

Addition and subtraction are performed on

separate hardware.

Addition and subtraction are

performed by using adder

only.

It has two different representation for 0.

One is +0 and second is -0. (+0 : 0000

0000) & (-0 : 1000 0000)

0 has only one representation

for -0 and +0 (+0 or -0 : 0000

0000).

It is non-weighted system.

It assigns negative weight to

the sign bit.

13. How the negative numbers are stored in memory?

Ans: Suppose the following fragment of code, int a = -34; Now how will this be stored in memory. So

here is the complete theory. Whenever a number with minus sign is encountered, the number (ignoring

minus sign) is converted to its binary equivalent. Then the two’s complement of the number is

calculated. That two’s complement is kept at place allocated in memory and the sign bit will be set to 1

because the binary being kept is of a negative number. Whenever it comes on accessing that value firstly

the sign bit will be checked if the sign bit is 1 then the binary will be two’s complemented and converted

to equivalent decimal number and will be represented with a minus sign.

Let us take an example:

Example –

int a = -2056;

Binary of 2056 will be calculated which is:

00000000000000000000100000001000 (32 bit representation, according of storage of int in C)

2’s complement of the above binary is:

11111111111111111111011111111000.

So finally the above binary will be stored at memory allocated for variable a.

When it comes on accessing the value of variable a, the above binary will be retrieved from the memory

location, then its sign bit that is the left most bit will be checked as it is 1 so the binary number is of a

negative number so it will be 2’s complemented and when it will be 2’s complemented will be get the

binary of 2056 which is:

00000000000000000000100000001000

The above binary number will be converted to its decimal equivalent which is 2056 and as the sign bit

was 1 so the decimal number which is being gained from the binary number will be represented with a

minus sign. In our case -2056.

14. Why are negative numbers stored as 2's complement?

Ans: When doing addition/subtraction on binary numbers in other representations we need to apply

different logics (circuits) to perform addition and subtraction. In 2s-complement representation, we

represent a positive number as it is and negative number by its corresponding 2s-complement, so we can

use the same circuit to perform addition and subtraction.

For example: to add 6+3 using 5 bit 2s-complement representation,

00110

+

00011

——–

01001

To subtract 6-3, rewrite as 6+ (-3):

00110

+

11101 (2s-complement of 3)

——-

00011

15. What is Booth’s Algorithm?

Ans: Booth algorithm gives a procedure for multiplying binary integers in signed 2’s complement

representation in efficient way, i.e., less number of additions/subtractions required. It operates on the

fact that strings of 0’s in the multiplier require no addition but just shifting and a string of 1’s in the

multiplier from bit weight 2^k to weight 2^m can be treated as 2^(k+1) to 2^m.

As in all multiplication schemes, booth algorithm requires examination of the multiplier bits and shifting

of the partial product. Prior to the shifting, the multiplicand may be added to the partial product,

subtracted from the partial product, or left unchanged according to following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least

significant 1 in a string of 1’s in the multiplier

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that

there was a previous ‘1’) in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous

multiplier bit.

16. What are the different Instruction Cycles?

Ans: The Instruction Cycle –

Each phase of Instruction Cycle can be decomposed into a sequence of elementary micro-operations. In

the above examples, there is one sequence each for the Fetch, Indirect, Execute and Interrupt Cycles.

The Indirect Cycle is always followed by the Execute Cycle. The Interrupt Cycle is always followed by

the Fetch Cycle. For both fetch and execute cycles, the next cycle depends on the state of the system.

17. What is Booth’s Algorithm?

Ans: Booth algorithm gives a procedure for multiplying binary integers in signed 2’s complement

representation in efficient way, i.e., less number of additions/subtractions required. It operates on the

fact that strings of 0’s in the multiplier require no addition but just shifting and a string of 1’s in the

multiplier from bit weight 2^k to weight 2^m can be treated as 2^(k+1) to 2^m.

As in all multiplication schemes, booth algorithm requires examination of the multiplier bits and

shifting of the partial product. Prior to the shifting, the multiplicand may be added to the partial

product, subtracted from the partial product, or left unchanged according to following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least significant 1

in a string of 1’s in the multiplier

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that there

was a previous ‘1’) in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous multiplier bit.

Hardware Implementation of Booths Algorithm – The hardware implementation of the booth

algorithm requires the register configuration shown in the figure below.

Booth’s Algorithm Flowchart –

We name the register as A, B and Q, AC, BR and QR respectively. Qn designates the least

significant bit of multiplier in the register QR. An extra flip-flop Qn+1is appended to QR to facilitate

a double inspection of the multiplier. The flowchart for the booth algorithm is shown below.

AC and the appended bit Qn+1 are initially cleared to 0 and the sequence SC is set to a number n

equal to the number of bits in the multiplier. The two bits of the multiplier in Qn and Qn+1are

inspected. If the two bits are equal to 10, it means that the first 1 in a string has been encountered.

This requires subtraction of the multiplicand from the partial product in AC. If the 2 bits are equal to

01, it means that the first 0 in a string of 0’s has been encountered. This requires the addition of the

multiplicand to the partial product in AC.

When the two bits are equal, the partial product does not change. An overflow cannot occur because

the addition and subtraction of the multiplicand follow each other. As a consequence, the 2 numbers

that are added always have a opposite signs, a condition that excludes an overflow. The next step is

to shift right the partial product and the multiplier (including Qn+1). This is an arithmetic shift right

(ashr) operation which AC and QR ti the right and leaves the sign bit in AC unchanged. The

sequence counter is decremented and the computational loop is repeated n times.

Example – A numerical example of booth’s algorithm is shown below for n = 4. It shows the step by

step multiplication of -5 and -7.

MD = -5 = 1011, MD = 1011, MD'+1 = 0101

MR = -7 = 1001

The explanation of first step is as follows: Qn+1

AC = 0000, MR = 1001, Qn+1 = 0, SC = 4

Qn Qn+1 = 10

So, we do AC + (MD)'+1, which gives AC = 0101

On right shifting AC and MR, we get

AC = 0010, MR = 1100 and Qn+1 = 1

OPERATION AC MR QN+1
SC

0000 1001 0
4

AC + MD’ +

1 0101 1001 0

ASHR 0010 1100 1
3

AC + MR 1101 1100 1

ASHR 1110 1110 0
2

ASHR 1111 0111 0
1

AC + MD’ +

1 0010 0011 1
0

Product is calculated as follows:

Product = AC MR

Product = 0010 0011 = 35

18. Define Micro-Operation.

Ans: Micro-operation. In computer central processing units, micro-operations (also known as

a micro-ops or μops) are detailed low-level instructions used in some designs to implement complex

machine instructions (sometimes termed macro-instructions in this context).

19. Define Instruction Set Architecture.

Ans: The instruction set, also called ISA (instruction set architecture), is part of a computer that pertains

to programming, which is basically machine language. The instruction set provides commands to the

processor, to tell it what it needs to do.

20. Define instruction.

Ans: Three Categories of Instructions: The instruction set is a collection of instructions each

representing a CPU operation. In assembly language, the instructions are represented by the mnimonics

and the operands (or their addresses) involved in the operation Data manipulation.

21. What is the types of instructions?

Ans: Three Categories of Instructions:

The instruction set is a collection of instructions each representing a CPU operation. In assembly

language, the instructions are represented by the mnimonics and the operands (or their addresses)

involved in the operation.

1. Data manipulation

o Arithmetic manipulation:

add, sub, mult, div, etc.

o Logic and bit manipulation:

and, or, nor, xor, etc.

o Shift and rotation (to right or left):

sll, srl, sra, rol, ror, etc.

Note: Instruction srl (shift right logical) shifts a 0 into the vacated bit (the sign bit),

while instruction sra (shift right arithmetic) repeats the sign bit (sign extension for

signed 2's complement).

2. Data transfer

o transfer data between MM and CPU:

lw (load word), la (load address), lb (load byte),

sw (store word), sb (store byte), etc.

o transfer data between registers in RF:

move, mfhi, mflo, mthi, mtlo,

3. Program control

o branch to instruction other than the one following the current one conditionally or

unconditionally (based on comparison between two operands or between one

operand and zero):

b, beq, bne, bgt, blt, bge, ble, beqz, bnez, bgez, bgtz,

o jump to different segments of the program (functions, subroutines, etc.)

j, jal, jalr, jr, etc.

22. Who define the maximum length of each type of instruction?

Ans: n instruction format defines the different component of an instruction. The main components of an

instruction are opcode (which instruction to be executed) and operands (data on which instruction to be

executed). Here are the different terms related to instruction format:

1. Instruction set size – It tells the total number of instructions defined in the processor.

2. Opcode size – It is the number of bits occupied by the opcode which is calculated by taking

log of instruction set size.

3. Operand size – It is the number of bits occupied by the operand.

4. Instruction size – It is calculated as sum of bits occupied by opcode and operands.

23. What are Instruction Formats (Zero, One, Two and Three Address Instruction)?

1. Ans: Zero Address Instructions –

A stack based computer do not use address field in instruction.To evaluate a expression first it is

converted to revere Polish Notation i.e. Post fix Notation.

Expression: X = (A+B)*(C+D)

Postfixed : X = AB+CD+*

TOP means top of stack

M[X] is any memory location

PUSH A TOP = A

PUSH B TOP = B

ADD

TOP = A+B

PUSH C TOP = C

PUSH D TOP = D

ADD

TOP = C+D

MUL

TOP = (C+D)*(A+B)

POP X M[X] = TOP

2. One Address Instructions –
This use a implied ACCUMULATOR register for data manipulation.One operand is in accumulator

and other is in register or memory location.Implied means that the CPU already know that one operand

is in accumulator so there is no need to specify it.

Expression: X = (A+B)*(C+D)

AC is accumulator

M[] is any memory location

M[T] is temporary location

LOAD A AC = M[A]

ADD B AC = AC + M[B]

STORE T M[T] = AC

LOAD C AC = M[C]

ADD D AC = AC + M[D]

MUL T AC = AC * M[T]

STORE X M[X] = AC

3. Two Address Instructions –
This is common in commercial computers.Here two address can be specified in the instruction.Unlike

earlier in one address instruction the result was stored in accumulator here result cab be stored at

different location rather than just accumulator, but require more number of bit to represent address.

Here destination address can also contain operand.

Expression: X = (A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

MOV R1, A R1 = M[A]

ADD R1, B R1 = R1 + M[B]

MOV R2, C R2 = C

ADD R2, D R2 = R2 + D

MUL R1, R2 R1 = R1 * R2

MOV X, R1 M[X] = R1

4. Three Address Instructions –
This has three address field to specify a register or a memory location. Program created are much short

in size but number of bits per instruction increase. These instructions make creation of program much

easier but it does not mean that program will run much faster because now instruction only contain

more information but each micro operation (changing content of register, loading address in address

bus etc.) will be performed in one cycle only.

Expression: X = (A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

ADD R1, A, B R1 = M[A] + M[B]

ADD R2, C, D R2 = M[C] + M[D]

MUL X, R1, R2 M[X] = R1 * R2

24. Difference between 3-address instruction and 0-address instruction.

Ans: Difference between Three-Address Instruction and Zero-Address Instruction :

THREE-ADDRESS

INSTRUCTION

ZERO-ADDRESS

INSTRUCTION

It has four fields. It has only one field.

It has one field for opcode and

three fields for address.

It has one field for opcode and

no fields for address.

It has long instruction length. It has shorter instruction.

It is slower accessing location

inside processor than memory.

It is faster accessing location

inside processor than memory.

There is distinct address fields for

destination and source.

There is no address field

common for destination and

source.

In 3-address format, destination

address can not contain operand.

While in 0-address format, there

is no field for operand.

In 3-address format, number of

instructions are less.

While in 0-address format,

number of instructions are

more.

It may need three memory

accesses for one instruction.

It does not need three memory

accesses.

25. Difference between 3-address instruction and 1-address instruction.

Ans:

THREE-ADDRESS INSTRUCTION ONE-ADDRESS INSTRUCTION

It has four fields. It has only two fields.

It has one field for opcode and three

fields for address.

It also has one field for opcode but there is only

one field for address.

It has long instruction length. It has shorter instruction.

There may be three memory accesses

needed for an instruction.

There is a single memory access needed for an

instruction.

It is slower accessing location inside

processor than memory.

It is faster accessing location inside processor

than memory.

It disadvantage i.e. three memory

access is eliminated by two-address

memory. It eliminated two memory access.

There are three location for operand

and result.

There is only one location for operand and

result.

26. What is the difference between Hardwired and Micro-programmed Control Unit ?

Ans: Difference between Hardwired and Microprogrammed Control Unit:

ATTRIBUTES HARDWIRED CONTROL UNIT

MICROPROGRAMMED

CONTROL UNIT

1. Speed Speed is fast Speed is slow

2. Cost of

Imlementation More costlier. Cheaper.

3. Flexibility

Not flexible to

accommodate new

system specification or

new instruction redesign

is required.

More flexible to

accommodate new

system specification or

new instruction sets.

4. Ability to

Handle Complex

Difficult to handle

complex intruction sets.

Easier to handle complex

intruction sets.

ATTRIBUTES HARDWIRED CONTROL UNIT

MICROPROGRAMMED

CONTROL UNIT

Instructions

5. Decoding

Complex decoding and

sequencing logic.

Easier decoding and

sequencing logic.

6. Applications RISC Microprocessor CISC Microprocessor

7. Instruction set

of Size Small Large

8. Control

Memory Absent Present

9. Chip Area

Required Less More

10. Occurrence

Occurrence of error is

more

Occurrence of error is

less

27. Write the steps are followed in addition and substraction of two floating point numbers.

Ans:

To understand floating point addition, first we see addition of real numbers in decimal as same logic is

applied in both cases.

For example, we have to add 1.1 * 103 and 50.

We cannot add these numbers directly. First, we need to align the exponent and then, we can add

significand.

After aligning exponent, we get 50 = 0.05 * 103

Now adding significand, 0.05 + 1.1 = 1.15

So, finally we get (1.1 * 103 + 50) = 1.15 * 103

Here, notice that we shifted 50 and made it 0.05 to add these numbers.

Now let us take example of floating point number addition
We follow these steps to add two numbers:

1. Align the significand

2. Add the significands

3. Normalize the result

Let the two numbers be
x = 9.75

y = 0.5625

Converting them into 32-bit floating point representation,

9.75’s representation in 32-bit format = 0 10000010 00111000000000000000000

0.5625’s representation in 32-bit format = 0 01111110 00100000000000000000000

Now we get the difference of exponents to know how much shifting is required.

(10000010 – 01111110)2 = (4)10

Now, we shift the mantissa of lesser number right side by 4 units.

Mantissa of 0.5625 = 1.00100000000000000000000

(note that 1 before decimal point is understood in 32-bit representation)

Shifting right by 4 units, we get 0.00010010000000000000000

Mantissa of 9.75 = 1. 00111000000000000000000

Adding mantissa of both

0. 00010010000000000000000

+ 1. 00111000000000000000000
————————————————-

1. 01001010000000000000000
In final answer, we take exponent of bigger number

So, final answer consist of :

Sign bit = 0

Exponent of bigger number = 10000010

Mantissa = 01001010000000000000000

32 bit representation of answer = x + y = 0 10000010 01001010000000000000000

 FLOATING POINT SUBTRACTION
Subtraction is similar to addition with some differences like we subtract mantissa unlike addition and in sign

bit we put the sign of greater number.

Let the two numbers be
x = 9.75

y = – 0.5625

Converting them into 32-bit floating point representation

9.75’s representation in 32-bit format = 0 10000010 00111000000000000000000

– 0.5625’s representation in 32-bit format = 1 01111110 00100000000000000000000

Now, we find the difference of exponents to know how much shifting is required.

(10000010 – 01111110)2 = (4)10

Now, we shift the mantissa of lesser number right side by 4 units.

Mantissa of – 0.5625 = 1.00100000000000000000000

(note that 1 before decimal point is understood in 32-bit representation)

Shifting right by 4 units, 0.00010010000000000000000

Mantissa of 9.75= 1. 00111000000000000000000

Subtracting mantissa of both

0. 00010010000000000000000

– 1. 00111000000000000000000
————————————————

1. 00100110000000000000000

Sign bit of bigger number = 0

So, finally the answer = x – y = 0 10000010 00100110000000000000000

28. Discuss different addressing modes in brief.

https://media.geeksforgeeks.org/wp-content/uploads/floating-point-arithmetic.jpg

Ans: Addressing Modes– The term addressing modes refers to the way in which the operand of an

instruction is specified. The addressing mode specifies a rule for interpreting or modifying the address field of

the instruction before the operand is actually executed.

Addressing modes for 8086 instructions are divided into two categories:

1) Addressing modes for data

2) Addressing modes for branch

The 8086 memory addressing modes provide flexible access to memory, allowing you to easily

access variables, arrays, records, pointers, and other complex data types. The key to good assembly

language programming is the proper use of memory addressing modes.

An assembly language program instruction consists of two parts

The memory address of an operand consists of two components:

IMPORTANT TERMS

 Starting address of memory segment.

 Effective address or Offset: An offset is determined by adding any combination of three address

elements: displacement, base and index.

 Displacement: It is an 8 bit or 16 bit immediate value given in the instruction.

 Base: Contents of base register, BX or BP.

 Index: Content of index register SI or DI.

According to different ways of specifying an operand by 8086 microprocessor, different addressing

modes are used by 8086.

Addressing modes used by 8086 microprocessor are discussed below:

 Implied mode:: In implied addressing the operand is specified in the instruction itself. In this mode

the data is 8 bits or 16 bits long and data is the part of instruction.Zero address instruction are

designed with implied addressing mode.

Example: CLC (used to reset Carry flag to 0)

 Immediate addressing mode (symbol #):In this mode data is present in address field of instruction

.Designed like one address instruction format.

Note:Limitation in the immediate mode is that the range of constants are restricted by size of address

field.

Example: MOV AL, 35H (move the data 35H into AL register)

 Register mode: In register addressing the operand is placed in one of 8 bit or 16 bit general purpose

registers. The data is in the register that is specified by the instruction.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_1.jpg
https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_2.jpg

Here one register reference is required to access the data.

Example: MOV AX,CX (move the contents of CX register to AX register)

 Register Indirect mode: In this addressing the operand’s offset is placed in any one of the registers

BX,BP,SI,DI as specified in the instruction. The effective address of the data is in the base register or

an index register that is specified by the instruction.

Here two register reference is required to access the data.

The 8086 CPUs let you access memory indirectly through a register using the register indirect

addressing modes.

 MOV AX, [BX](move the contents of memory location s

addressed by the register BX to the register AX)

 Auto Indexed (increment mode): Effective address of the operand is the contents of a register

specified in the instruction. After accessing the operand, the contents of this register are

automatically incremented to point to the next consecutive memory location.(R1)+.

Here one register reference,one memory reference and one ALU operation is required to access the

data.

Example:

 Add R1, (R2)+ // OR

 R1 = R1 +M[R2]

R2 = R2 + d

Useful for stepping through arrays in a loop. R2 – start of array d – size of an element

 Auto indexed (decrement mode): Effective address of the operand is the contents of a register

specified in the instruction. Before accessing the operand, the contents of this register are

automatically decremented to point to the previous consecutive memory location. –(R1)

Here one register reference,one memory reference and one ALU operation is required to access the

data.

Example:

Add R1,-(R2) //OR

R2 = R2-d

R1 = R1 + M[R2]

Auto decrement mode is same as auto increment mode. Both can also be used to implement a stack

as push and pop . Auto increment and Auto decrement modes are useful for implementing “Last-In-

First-Out” data structures.

 Direct addressing/ Absolute addressing Mode (symbol []): The operand’s offset is given in the

instruction as an 8 bit or 16 bit displacement element. In this addressing mode the 16 bit effective

address of the data is the part of the instruction.

Here only one memory reference operation is required to access the data.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_3.jpg
https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_4.jpg

Example:ADD AL,[0301] //add the contents of offset address 0301 to AL

 Indirect addressing Mode (symbol @ or ()):In this mode address field of instruction contains the

address of effective address.Here two references are required.

1st reference to get effective address.

2nd reference to access the data.

Based on the availability of Effective address, Indirect mode is of two kind:

1. Register Indirect:In this mode effective address is in the register, and corresponding register

name will be maintained in the address field of an instruction.

Here one register reference,one memory reference is required to access the data.

2. Memory Indirect:In this mode effective address is in the memory, and corresponding memory

address will be maintained in the address field of an instruction.

Here two memory reference is required to access the data.

 Indexed addressing mode: The operand’s offset is the sum of the content of an index register SI or

DI and an 8 bit or 16 bit displacement.

Example:MOV AX, [SI +05]

 Based Indexed Addressing: The operand’s offset is sum of the content of a base register BX or BP

and an index register SI or DI.

Example: ADD AX, [BX+SI]

Based on Transfer of control, addressing modes are:

 PC relative addressing mode: PC relative addressing mode is used to implement intra

segment transfer of control, In this mode effective address is obtained by adding displacement

to PC.

 EA= PC + Address field value

PC= PC + Relative value.

 Base register addressing mode:Base register addressing mode is used to implement inter

segment transfer of control.In this mode effective address is obtained by adding base register

value to address field value.

 EA= Base register + Address field value.

 PC= Base register + Relative value.

Note:

1. PC relative nad based register both addressing modes are suitable for program

relocation at runtime.

2. Based register addressing mode is best suitable to write position independent codes.

29. What is the concept behind use of Booth Multiplier?

Ans: Booth’s algorithm is a multiplication algorithm that multiplies two signed binary numbers in 2’s

compliment notation.

Booth used desk calculators that were faster at shifting than adding and created the algorithm to increase

their speed. Booth’s algorithm is of interest in the study of computer architecture. Here’s the

implememtation of the algorithm.

Examples:

Input : 0110, 0010

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_5.jpg

Output : qn q[n+1] AC QR sc(step count)

 initial 0000 0010 4

 0 0 rightShift 0000 0001 3

 1 0 A = A - BR 1010

 rightShift 1101 0000 2

 0 1 A = A + BR 0011

 rightShift 0001 1000 1

 0 0 rightShift 0000 1100 0

Result=1100

Algorithm :

Put multiplicand in BR and multiplier in QR

and then the algorithm works as per the following conditions :

1. If Qn and Qn+1 are same i.e. 00 or 11 perform arithematic shift by 1 bit.

2. If Qn Qn+1 = 10 do A= A + BR and perform arithematic shift by 1 bit.

3. If Qn Qn+1 = 01 do A= A – BR and perform arithematic shift by 1 bit.

30. How does the carry look-ahead adder work?

Ans: Motivation behind Carry Look-Ahead Adder :

In ripple carry adders, for each adder block, the two bits that are to be added are available instantly.

However, each adder block waits for the carry to arrive from its previous block. So, it is not possible to

generate the sum and carry of any block until the input carry is known. The block waits for

the block to produce its carry. So there will be a considerable time delay which is carry

propagation delay.

Consider the above 4-bit ripple carry adder. The sum is produced by the corresponding full adder as

soon as the input signals are applied to it. But the carry input is not available on its final steady state

value until carry is available at its steady state value. Similarly depends on and on .

Therefore, though the carry must propagate to all the stages in order that output and carry settle

their final steady-state value.

The propagation time is equal to the propagation delay of each adder block, multiplied by the number of

adder blocks in the circuit. For example, if each full adder stage has a propagation delay of 20 nanoseconds,

then will reach its final correct value after 60 (20 × 3) nanoseconds. The situation gets worse, if we

extend the number of stages for adding more number of bits.

Carry Look-ahead Adder :
A carry look-ahead adder reduces the propagation delay by introducing more complex hardware. In this

design, the ripple carry design is suitably transformed such that the carry logic over fixed groups of bits of

the adder is reduced to two-level logic. Let us discuss the design in detail.

Consider the full adder circuit shown above with corresponding truth table. We define two variables

as ‘carry generate’ and ‘carry propagate’ then,

The sum output and carry output can be expressed in terms of carry generate and carry propagate as

where produces the carry when both , are 1 regardless of the input carry. is associated with

the propagation of carry from to .

The carry output Boolean function of each stage in a 4 stage carry look-ahead adder can be expressed as

From the above Boolean equations we can observe that does not have to wait for and to

propagate but actually is propagated at the same time as and . Since the Boolean expression for

each carry output is the sum of products so these can be implemented with one level of AND gates followed

by an OR gate.

The implementation of three Boolean functions for each carry output (, and) for a carry look-

ahead carry generator shown in below figure.

Time Complexity Analysis :
We could think of a carry look-ahead adder as made up of two “parts”

1. The part that computes the carry for each bit.

2. The part that adds the input bits and the carry for each bit position.

The complexity arises from the part that generates the carry, not the circuit that adds the bits.

Now, for the generation of the carry bit, we need to perform a AND between (n+1) inputs. The

complexity of the adder comes down to how we perform this AND operation. If we have AND gates, each

with a fan-in (number of inputs accepted) of k, then we can find the AND of all the bits

in time. This is represented in asymptotic notation as .

Advantages and Disadvantages of Carry Look-Ahead Adder :

Advantages –
 The propagation delay is reduced.

 It provides the fastest addition logic.

Disadvantages –
 The Carry Look-ahead adder circuit gets complicated as the number of variables increase.

 The circuit is costlier as it involves more number of hardware.

31. Difference between Memory based and Register based Addressing Modes.

Ans: Addressing modes are the operations field specifies the operations which need to be

performed. The operation must be executed on some data which is already stored in computer

registers or in the memory. The way of choosing operands during program execution is dependent on

addressing modes of the instruction. “The addressing mode specifies a rule for interpreting or

modifying the address field of the instruction before the operand is actually referenced. “Basically

how we are interpreting the operand which is given in the instruction is known as addressing mode.

Addressing mode very much depend on the type of CPU organisation. There are three types of CPU

organisation:

1. Single Accumulator organisation

2. General register organisation

3. Stack organisation

Addressing modes is used for one or both of the purpose. These can also be said as

the advantages of using addressing mode:

1. To give programming versatility to the user by providing such facilities as pointers to memory,

counter for loop control, indexing of data, and program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

There are numbers of addressing modes available and it depends on the architecture and CPU

organisation which of the addressing modes can be applied.

MEMORY BASED

ADDRESSING MODES

REGISTER BASED

ADDRESSING MODES

The operand is present in

memory and its address is

given in the instruction itself.

This addressing mode is

taking proper advantage of

memory address, e.g., Direct

addressing mode

An operand will be given in one

of the register and register

number will be provided in the

instruction.With the register

number present in instruction,

operand is fetched, e.g., Register

mode

The memory address

specified in instruction may

give the address where the

effective address is stored in

The register contains the address

of the operand. The effective

address can be derived from the

content of the register specified

MEMORY BASED

ADDRESSING MODES

REGISTER BASED

ADDRESSING MODES

the memory. In this case

effective memory address is

present in the memory address

which is specified in the

instruction, e.g., Indirect

Addressing Mode

in the instruction. The content of

the register might not be the

effective address. This mode

takes full advantage of registers,

e.g., Register indirect mode

The content of base register is

added to the address part of

the instruction to obtain the

effective address. A base

register is assumed to hold a

base address and the address

field of the instruction gives

displacement relative to the

base address, e.g., Base

Register Addressing Mode

If we are having a table of data

and our program needs to access

all the values one by one we need

something which decrements the

program counter/or any register

which has base address. Though

in this case register is basically

decreased, it is register based

addressing mode, e.g., In Auto

decrements mode

The content of the index

register is added to the

address part that is given in

the instruction to obtain the

effective address. Index Mode

is used to access an array

whose elements are in

successive memory locations,

e.g., Indexed Addressing

Mode

If we are having a table of data

and our program needs to access

all the values one by one we need

something which increment the

program counter/or any register

which has base address, e.g.,

Auto increment mode

The content of program

counter is added to the

address part of the instruction

in order to obtain the effective

address. The address part of

the instruction in this case is

usually a signed number

which can be either positive

or negative, e.g., Relative

addressing mode

Instructions generally used for

initializing registers to a constant

value is register based addressing

mode,and this technique is very

useful approach, e.g., Immediate

mode.

Memory based addressing modes are mostly rely on Memory address and content present at some

memory location. Register based addressing modes are mostly rely on Registers and content present

at some register either it is data or some memory address.

 Objective

32. The smallest integer that can be represented by an 8-bit number in 2’s complement form is

 a) -256 b) -128 c) -127 d) 0

Answer: (b)

33. The decimal value 0.5 in IEEE single precision floating point representation has

 a) fraction bits of 000…000 and exponent value of 0

 b) fraction bits of 000…000 and exponent value of −1

 c) fraction bits of 100…000 and exponent value of 0

 d) no exact representation

Answer: (b)

34. P is a 16-bit signed integer. The 2's complement representation of P is (F87B)16.The 2's

complement representation of 8*P

 a) (C3D8)16 b) (187B)16 c) (187B)10 d) (187B)8

Answer: (a)

35. (1217)8 is equivalent to

 a) (1217)16 b) (028F)16 c)(2297)10 d) (0B17)16

Answer: (b)

36. Consider the equation (123)5 = (x8)y with x and y as unknown. The number of possible solutions

 is _____ .

 a) 0 b) 1 c) 2 d) 3

Answer: (d)

37. The range of integers that can be represented by an n bit 2's complement number system is

 __________________.

Ans: -(2(n-1)) to +(2(n-1)-1)

38. The hexadecimal representation of (657)8 is

 a) 1AF b) D78 c) D71 d) 32F

Ans: a)

 Module 2

39. Explain the design of a simple hypothetical CPU.

Ans: It actually takes very little hardware to implement a simple CPU. Today in class we built a CPU with

the very basics:

 An instruction fetch unit, which grabs the next instruction. The bits of the instruction are what

activate different parts of the CPU circuit to make things happen.

 A register file, from which operands are read, and results are written.

 An arithmetic unit, which performs operations on the operands.

There are a few key tricks used throughout these designs:

 In a CPU, we need some way to keep operating on the same values. In a circuit, this means feeding

the output of the circuit back around to its own input, recycling the same values over and over.

 Most CPUs operate on values of more than one bit. Using a single bus to represent multiple bits with

a single line dramatically simplifies the circuit schematic compared to the physically more realistic

approach of drawing separate wires for each bit. Logisim calls this "Data Bits"; most other tools call

it a "bus".

 A multiplexor selects one input line from a set of inputs, based on "select line". For example, an 8-in

mux has a 3 bit select input, which is a binary code indicating which of the 8 inputs to select as the

output. Multiplexors are used:

o In the register file, to select which register should provide input data for arithmetic. The

register select lines are controlled by the input register portion of the instruction being

executed.

o In the arithmetic unit, to pick the output of one arithmetic circuit from those listed. The

arithmetic select lines are controlled by the opcode portion of the instruction.

Timing matters! In a real circuit timing is often the most important consideration for both

performance and correctness. In the simulator, all the registers are edge-triggered. To avoid timing

bugs, we fetch the next instruction on one edge of the clock, and write the results on the opposite

edge of the clock, which prevents bugs where the register grabs a value as it changes. In a more

complex design, we might need to keep a shift register to cycle between operating stages within a

single instruction.

40. Difference between hardwired and microprogrammed design approaches.

Ans: To execute an instruction, there are two types of control units Hardwired Control unit and Micro-

programmed control unit.

1. Hardwired control units are generally faster than microprogrammed designs. In hardwired control,

we saw how all the control signals required inside the CPU can be generated using a state counter

and a PLA circuit.

2. A microprogrammed control unit is a relatively simple logic circuit that is capable of (1) sequencing

through microinstructions and (2) generating control signals to execute each microinstruction.

HARDWIRED CONTROL UNIT

MICROPROGRAMMED CONTROL

UNIT

Hardwired control unit generates the

control signals needed for the processor

using logic circuits

Micrprogrammed control unit generates the

control signals with the help of micro

instructions stored in control memory

Hardwired control unit is faster when

compared to microprogrammed control unit

as the required control signals are generated

with the help of hardwares

This is slower than the other as micro

instructions are used for generating signals

here

Difficult to modify as the control signals

that need to be generated are hard wired

Easy to modify as the modification need to

be done only at the instruction level

More costlier as everything has to be

realized in terms of logic gates

Less costlier than hardwired control as only

micro instructions are used for generating

HARDWIRED CONTROL UNIT

MICROPROGRAMMED CONTROL

UNIT

control signals

It cannot handle complex instructions as the

circuit design for it becomes complex
It can handle complex instructions

Only limited number of instructions are

used due to the hardware implementation

Control signals for many instructions can

be generated

Used in computer that makes use of

Reduced Instruction Set Computers(RISC)

Used in computer that makes use of

Complex Instruction Set Computers(CISC)

41. What are the different types of semiconductor memory technologies?

Ans: There is a large variety of types of ROM and RAM that are available. Often the overall name

for the memory technology includes the initials RAM or ROM and this gives a guide as to the overall

type of format for the memory.

With technology moving forwards apace, not only are the established technologies moving forwards

with SDRAM technology moving from DDR3 to DDR4 and then to DDR5, but Flash memory used

in memory cards is also developing as are the other technologies.

In addition to this, new memory technologies are arriving on the scene and they are starting to make

an impact in the market, enabling processor circuits to perform more effectively.

The different memory types or memory technologies are detailed below:

 DRAM: Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each

bit of data, and the level of charge on each capacitor determines whether that bit is a logical 1 or 0.

However these capacitors do not hold their charge indefinitely, and therefore the data needs to be

refreshed periodically. As a result of this dynamic refreshing it gains its name of being a dynamic

RAM. DRAM is the form of semiconductor memory that is often used in equipment including

personal computers and workstations where it forms the main RAM for the computer. The

semiconductor devices are normally available as integrated circuits for use in PCB assembly in the

form of surface mount devices or less frequently now as leaded components.

 EEPROM: This is an Electrically Erasable Programmable Read Only Memory. Data can be

written to these semiconductor devices and it can be erased using an electrical voltage. This is

typically applied to an erase pin on the chip. Like other types of PROM, EEPROM retains the

contents of the memory even when the power is turned off. Also like other types of ROM, EEPROM

is not as fast as RAM.

 EPROM: This is an Erasable Programmable Read Only Memory. These semiconductor devices

can be programmed and then erased at a later time. This is normally achieved by exposing the

semiconductor device itself to ultraviolet light. To enable this to happen there is a circular window in

the package of the EPROM to enable the light to reach the silicon of the device. When the PROM is

in use, this window is normally covered by a label, especially when the data may need to be

preserved for an extended period.

The PROM stores its data as a charge on a capacitor. There is a charge storage capacitor for each cell

and this can be read repeatedly as required. However it is found that after many years the charge may

leak away and the data may be lost.

Nevertheless, this type of semiconductor memory used to be widely used in applications where a

form of ROM was required, but where the data needed to be changed periodically, as in a

development environment, or where quantities were low.

 Flash memory: Flash memory may be considered as a development of EEPROM technology.

Data can be written to it and it can be erased, although only in blocks, but data can be read on an

individual cell basis.

To erase and re-programme areas of the chip, programming voltages at levels that are available

within electronic equipment are used. It is also non-volatile, and this makes it particularly useful. As

a result Flash memory is widely used in many applications including USB memory sticks, compact

Flash memory cards, SD memory cards and also now solid state hard drives for computers and many

other applications.

 F-RAM: Ferroelectric RAM is a random-access memory technology that has many similarities to

the standard DRAM technology. The major difference is that it incorporates a ferroelectric layer

instead of the more usual dielectric layer and this provides its non-volatile capability. As it offers a

non-volatile capability, F-RAM is a direct competitor to Flash.

 MRAM: This is Magneto-resistive RAM, or Magnetic RAM. It is a non-volatile RAM memory

technology that uses magnetic charges to store data instead of electric charges.

Unlike technologies including DRAM, which require a constant flow of electricity to maintain the

integrity of the data, MRAM retains data even when the power is removed. An additional advantage

is that it only requires low power for active operation. As a result this technology could become a

major player in the electronics industry now that production processes have been developed to enable

it to be produced.

 P-RAM / PCM: This type of semiconductor memory is known as Phase change Random Access

Memory, P-RAM or just Phase Change memory, PCM. It is based around a phenomenon where a

form of chalcogenide glass changes is state or phase between an amorphous state (high resistance)

and a polycrystalline state (low resistance). It is possible to detect the state of an individual cell and

hence use this for data storage. Currently this type of memory has not been widely commercialised,

but it is expected to be a competitor for flash memory.

 PROM: This stands for Programmable Read Only Memory. It is a semiconductor memory which

can only have data written to it once - the data written to it is permanent. These memories are bought

in a blank format and they are programmed using a special PROM programmer.

Typically a PROM will consist of an array of fuseable links some of which are "blown" during the

programming process to provide the required data pattern.

 SDRAM: Synchronous DRAM. This form of semiconductor memory can run at faster speeds than

conventional DRAM. It is synchronised to the clock of the processor and is capable of keeping two

sets of memory addresses open simultaneously. By transferring data alternately from one set of

addresses, and then the other, SDRAM cuts down on the delays associated with non-synchronous

RAM, which must close one address bank before opening the next.

Within the SDRAM family there are several types of memory technologies that are seen. These are

referred to by the letters DDR - Double Data Rate. DDR4 is currently the latest technology, but this

is soon to be followed by DDR5 which will offer some significant improvements in performance.

 SRAM: Static Random Access Memory. This form of semiconductor memory gains its name from

the fact that, unlike DRAM, the data does not need to be refreshed dynamically.

These semiconductor devices are able to support faster read and write times than DRAM (typically

10 ns against 60 ns for DRAM), and in addition its cycle time is much shorter because it does not

need to pause between accesses. However they consume more power, they are less dense and more

expensive than DRAM. As a result of this SRAM is normally used for caches, while DRAM is used

as the main semiconductor memory technology.

Semiconductor memory technology is developing at a fast rate to meet the ever growing needs of the

electronics industry. Not only are the existing technologies themselves being developed, but

considerable amounts of research are being invested in new types of semiconductor memory

technology.

In terms of the memory technologies currently in use, SDRAM versions like DDR4 are being further

developed to provide DDR5 which will offer significant performance improvements. In time, DDR5

will be developed to provide the next generation of SDRAM.

Other forms of memory are seen around the home in the form of USB memory sticks, Compact

Flash, CF cards or SD memory cards for cameras and other applications as well as solid state hard

drives for computers.

The semiconductor devices are available in a wide range of formats to meet the differing PCB

assembly and other needs.

42. Discuss about the need of the memory organization.

Ans: In the Computer System Design, Memory Hierarchy is an enhancement to organize the memory

such that it can minimize the access time. The Memory Hierarchy was developed based on a program

behavior known as locality of references.The figure below clearly demonstrates the different levels

of memory hierarchy :

This Memory Hierarchy Design is divided into 2 main types:

1. External Memory or Secondary Memory –

Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage devices which are

accessible by the processor via I/O Module.

2. Internal Memory or Primary Memory –

Comprising of Main Memory, Cache Memory & CPU registers. This is directly accessible by the

processor.

We can infer the following characteristics of Memory Hierarchy Design from above figure:

1. Capacity:

It is the global volume of information the memory can store. As we move from top to bottom in the

Hierarchy, the capacity increases.

2. Access Time:

It is the time interval between the read/write request and the availability of the data. As we move

from top to bottom in the Hierarchy, the access time increases.

3. Performance:

Earlier when the computer system was designed without Memory Hierarchy design, the speed gap

increases between the CPU registers and Main Memory due to large difference in access time. This

results in lower performance of the system and thus, enhancement was required. This enhancement

was made in the form of Memory Hierarchy Design because of which the performance of the system

increases. One of the most significant ways to increase system performance is minimizing how far

down the memory hierarchy one has to go to manipulate data.

4. Cost per bit:

As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory is

costlier than External Memory.

43: Difference between Input and output subsystems.

Ans: Input and output (I/O) devices allow us to communicate with the computer system. I/O is the

transfer of data between primary memory and various I/O peripherals. Input devices such as

keyboards, mice, card readers, scanners, voice recognition systems, and touch screens enable us to

enter data into the computer. Output devices such as monitors, printers, plotters, and speakers allow

us to get information from the computer.

These devices are not connected directly to the CPU. Instead, there is an interface that handles the

data transfers. This interface converts the system bus signals to and from a format that is acceptable

to the given device. The CPU communicates to these external devices via I/O registers. ...

44. List out the types of I/O devices.

Ans: Types of I/O

There are three types of I/O operations:

Sensory input. digital input. analog input.

Control output. direct digital output. modulated digital output. analog output.

Data transfer. parallel. serial.

45. What is the role of I/O device interface?

Ans: Input Output Interface provides a method for transferring information between internal storage

and external I/O devices. Peripherals connected to a computer need special communication links for

interfacing them with the central processing unit.

46. What do you mean by software interrupts?

Ans: Software Interrupt Definition. A software interrupt, also called an exception, is an interrupt that

is caused by software, usually by a program in user mode. ... Examples of events that cause them are

requests by an application program for certain services from the operating system or the termination

of such programs.

47. What do know about privileged and non privileged instructions?

Ans: Privileged Instructions possess the following characteristics :

(i) If any attempt is made to execute a Privileged Instruction in User Mode, then it will not be

executed and treated as an illegal instruction. The Hardware traps it to the Operating System.

(ii) Before transferring the control to any User Program, it is the responsibility of the Operating

System to ensure that the Timer is set to interrupt. Thus, if the timer interrupts then the Operating

System regains the control.

Thus, any instruction which can modify the contents of the Timer is a Privileged Instruction.

(iii) Privileged Instructions are used by the Operating System in order to achieve correct operation.

(iv) Various examples of Privileged Instructions include:

I/O instructions and Halt instructions

Turn off all Interrupts

Set the Timer

Context Switching

Clear the Memory or Remove a process from the Memory

Modify entries in Device-status table.

Various examples of Non-Privileged Instructions include:

 Reading the status of Processor

 Reading the System Time

 Generate any Trap Instruction

 Sending the final prinout of Printer

Also, it is important to note that in order to change the mode from Privileged to Non-Privileged, we

require a Non-privileged Instruction that does not generate any interrupt.

48. What is the role of interrupts in process state transitions?

Ans: There are two ways for a process to transition from the running state to the ready state

depending on the OS implements multitasking:

 With preemptive multitasking, the OS uses timer interrupts (there is one timer for each core or

processor in the system) to regularly interrupt whatever process is currently running. The interrupt

handler then invokes the OS scheduler to determine whether to schedule another process or continue

running the same process. If the scheduler decided to run another process, then the current process

transition from the running state to the ready state.

 With cooperative multitasking, the OS does not use interrupts to scheduler processes. Instead, a

running process should voluntarily yield control to the scheduler to allow it to schedule another

process. So processes do not transition between the running and ready states using interrupts, but

only voluntarily.

It seems to me that the figure from the Modern Operating Systems book applies to both multitasking

methods while the figure from the Operating System Concepts is specifically about preemptive

multitasking. Although by changing the word "interrupt" to something more inclusive like "yield,"

then the other figure would also apply to cooperative multitasking.

49. Difference between Interrupts and Exceptions.

Ans: Exceptions and interrupts are unexpected events which will disrupt the normal flow of

execution of instruction(that is currently executing by processor). An exception is an unexpected

event from within the processor. Interrupt is an unexpected event from outside the process.

Whenever an exception or interrupt occurs, the hardware starts executing the code that performs an

action in response to the exception. This action may involve killing a process, outputting an error

message, communicating with an external device, or horribly crashing the entire computer system by

initiating a “Blue Screen of Death” and halting the CPU. The instructions responsible for this action

reside in the operating system kernel, and the code that performs this action is called the interrupt

handler code. Now, We can think of handler code as an operating system subroutine. Then, After the

handler code is executed, it may be possible to continue execution after the instruction where the

execution or interrupt occurred.

Exception and Interrupt Handling :

Whenever an exception or interrupt occurs, execution transition from user mode to kernel mode

where the exception or interrupt is handled. In detail, the following steps must be taken to handle an

exception or interrupts.

While entering the kernel, the context (values of all CPU registers) of the currently executing process

must first be saved to memory. The kernel is now ready to handle the exception/interrupt.

1. Determine the cause of the exception/interrupt.

https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Cooperative_multitasking
https://www.geeksforgeeks.org/interrupts/

2. Handle the exception/interrupt.

When the exception/interrupt have been handled the kernel performs the following steps:

1. Select a process to restore and resume.

2. Restore the context of the selected process.

3. Resume execution of the selected process.

At any point in time, the values of all the registers in the CPU defines the context of the CPU.

Another name used for CPU context is CPU state.

The exception/interrupt handler uses the same CPU as the currently executing process. When

entering the exception/interrupt handler, the values in all CPU registers to be used by the

exception/interrupt handler must be saved to memory. The saved register values can later restored

before resuming execution of the process.

The handler may have been invoked for a number of reasons. The handler thus needs to determine

the cause of the exception or interrupt. Information about what caused the exception or interrupt can

be stored in dedicated registers or at predefined addresses in memory.

Next, the exception or interrupt needs to be serviced. For instance, if it was a keyboard interrupt, then

the key code of the key press is obtained and stored somewhere or some other appropriate action is

taken. If it was an arithmetic overflow exception, an error message may be printed or the program

may be terminated.

The exception/interrupt have now been handled and the kernel. The kernel may choose to resume the

same process that was executing prior to handling the exception/interrupt or resume execution of any

other process currently in memory.

The context of the CPU can now be restored for the chosen process by reading and restoring all

register values from memory.

The process selected to be resumed must be resumed at the same point it was stopped. The address of

this instruction was saved by the machine when the interrupt occurred, so it is simply a matter of

getting this address and make the CPU continue to execute at this address.

50. What are the different types of interrupts present in 8086 microprocessor?

Ans: An interrupt is a condition that halts the microprocessor temporarily to work on a different task and then

return to its previous task. Interrupt is an event or signal that request to attention of CPU. This halt allows

peripheral devices to access the microprocessor.

Whenever an interrupt occurs the processor completes the execution of the current instruction and

starts the execution of an Interrupt Service Routine (ISR) or Interrupt Handler. ISR is a program that

tells the processor what to do when the interrupt occurs. After the execution of ISR, control returns

back to the main routine where it was interrupted.

In 8086 microprocessor following tasks are performed when microprocessor encounters an interrupt:

1. The value of flag register is pushed into the stack. It means that first the value of SP (Stack Pointer)

is decremented by 2 then the value of flag register is pushed to the memory address of stack segment.

2. The value of starting memory address of CS (Code Segment) is pushed into the stack.

3. The value of IP (Instruction Pointer) is pushed into the stack.

4. IP is loaded from word location (Interrupt type) * 04.

5. CS is loaded from the next word location.

6. Interrupt and Trap flag are reset to 0.

The different types of interrupts present in 8086 microprocessor are given by:

1. Hardware Interrupts –

Hardware interrupts are those interrupts which are caused by any peripheral device by sending a

signal through a specified pin to the microprocessor. There are two hardware interrupts in 8086

microprocessor. They are:

 (A) NMI (Non Maskable Interrupt) – It is a single pin non maskable hardware interrupt which

cannot be disabled. It is the highest priority interrupt in 8086 microprocessor. After its

execution, this interrupt generates a TYPE 2 interrupt. IP is loaded from word location 00008

H and CS is loaded from the word location 0000A H.

 (B) INTR (Interrupt Request) – It provides a single interrupt request and is activated by I/O

port. This interrupt can be masked or delayed. It is a level triggered interrupt. It can receive

any interrupt type, so the value of IP and CS will change on the interrupt type received.

2. Software Interrupts – These are instructions that are inserted within the program to generate

interrupts. There are 256 software interrupts in 8086 microprocessor. The instructions are of the

format INT type where type ranges from 00 to FF. The starting address ranges from 00000 H to

003FF H. These are 2 byte instructions. IP is loaded from type * 04 H and CS is loaded from the next

address give by (type * 04) + 02 H. Some important software interrupts are:

 (A) TYPE 0 corresponds to division by zero(0).

 (B) TYPE 1 is used for single step execution for debugging of program.

 (C) TYPE 2 represents NMI and is used in power failure conditions.

 (D) TYPE 3 represents a break-point interrupt.

 (E) TYPE 4 is the overflow interrupt.

51. Discuss the different Mode of Data Transfer.

Ans: The method that is used to transfer information between internal storage and external I/O devices is

known as I/O interface. The CPU is interfaced using special communication links by the peripherals connected

to any computer system. These communication links are used to resolve the differences between CPU and

peripheral. There exists special hardware components between CPU and peripherals to supervise and

synchronize all the input and output transfers that are called interface units.

Mode of Transfer:

The binary information that is received from an external device is usually stored in the memory unit.

The information that is transferred from the CPU to the external device is originated from the

memory unit. CPU merely processes the information but the source and target is always the memory

unit. Data transfer between CPU and the I/O devices may be done in different modes.

Data transfer to and from the peripherals may be done in any of the three possible ways

1. Programmed I/O.

2. Interrupt- initiated I/O.

3. Direct memory access(DMA).

Now let’s discuss each mode one by one.

1. Programmed I/O: It is due to the result of the I/O instructions that are written in the computer

program. Each data item transfer is initiated by an instruction in the program. Usually the transfer is

from a CPU register and memory. In this case it requires constant monitoring by the CPU of the

peripheral devices.

Example of Programmed I/O: In this case, the I/O device does not have direct access to the

memory unit. A transfer from I/O device to memory requires the execution of several instructions by

the CPU, including an input instruction to transfer the data from device to the CPU and store

instruction to transfer the data from CPU to memory. In programmed I/O, the CPU stays in the

program loop until the I/O unit indicates that it is ready for data transfer. This is a time consuming

process since it needlessly keeps the CPU busy. This situation can be avoided by using an interrupt

facility. This is discussed below.

2. Interrupt- initiated I/O: Since in the above case we saw the CPU is kept busy unnecessarily. This

situation can very well be avoided by using an interrupt driven method for data transfer. By using

interrupt facility and special commands to inform the interface to issue an interrupt request signal

whenever data is available from any device. In the meantime the CPU can proceed for any other

program execution. The interface meanwhile keeps monitoring the device. Whenever it is determined

that the device is ready for data transfer it initiates an interrupt request signal to the computer. Upon

detection of an external interrupt signal the CPU stops momentarily the task that it was already

performing, branches to the service program to process the I/O transfer, and then return to the task it

was originally performing.

Note: Both the methods programmed I/O and Interrupt-driven I/O require the active intervention of

the

processor to transfer data between memory and the I/O module, and any data transfer must transverse

a path through the processor. Thus both these forms of I/O suffer from two inherent drawbacks.

 The I/O transfer rate is limited by the speed with which the processor can test and service a

device.

 The processor is tied up in managing an I/O transfer; a number of instructions must be

executed

for each I/O transfer.

3. Direct Memory Access: The data transfer between a fast storage media such as magnetic disk and

memory unit is limited by the speed of the CPU. Thus we can allow the peripherals directly

communicate with each other using the memory buses, removing the intervention of the CPU. This

type of data transfer technique is known as DMA or direct memory access. During DMA the CPU is

idle and it has no control over the memory buses. The DMA controller takes over the buses to

manage the transfer directly between the I/O devices and the memory unit.

Bus Request : It is used by the DMA controller to request the CPU to relinquish the control of the

buses.

Bus Grant : It is activated by the CPU to Inform the external DMA controller that the buses are in

high impedance state and the requesting DMA can take control of the buses. Once the DMA has

taken the control of the buses it transfers the data. This transfer can take place in many ways.

52. Difference between Maskable and Non Maskable Interrupt.

Ans: Difference between maskable and nonmaskable interrupt :

SR.NO.

MASKABLE

INTERRUPT

NON MASKABLE

INTERRUPT

1

Maskable

interrupt is a

hardware

Interrupt that can

be disabled or

ignored by the

instructions of

CPU.

A non-maskable

interrupt is a

hardware interrupt

that cannot be

disabled or ignored

by the instructions of

CPU.

2

When maskable

interrupt occur, it

can be handled

after executing

the current

instruction.

When non-maskable

interrupts occur, the

current instructions

and status are stored

in stack for the CPU

to handle the

interrupt.

3

Maskable

interrupts help to

handle lower

priority tasks.

Non-maskable

interrupt help to

handle higher

priority tasks such as

watchdog timer.

4

Maskable

interrupts used to

interface with

peripheral

device.

Non maskable

interrupt used for

emergency purpose

e.g power failure,

smoke detector etc .

5

In maskable

interrupts,

response time is

high.

In non maskable

interrupts, response

time is low.

6

It may be

vectored or non-

vectored.

All are vectored

interrupts.

7

Operation can be

masked or made

pending.

Operation Cannot be

masked or made

pending.

8

RST6.5, RST7.5,

and RST5.5 of

Trap of 8085

microprocessor is an

SR.NO.

MASKABLE

INTERRUPT

NON MASKABLE

INTERRUPT

8085 are some

common

examples of

maskable

Interrupts.

example for non-

maskable interrupt.

53. Difference between Interrupt and Polling.

Ans: Interrupt:

Interrupt is a hardware mechanism in which, the device notices the CPU that it requires its attention.

Interrupt can take place at any time. So when CPU gets an interrupt signal trough the indication

interrupt-request line, CPU stops the current process and respond to the interrupt by passing the

control to interrupt handler which services device.

Polling:

In polling is not a hardware mechanism, its a protocol in which CPU steadily checks whether the

device needs attention. Wherever device tells process unit that it desires hardware processing, in

polling process unit keeps asking the I/O device whether or not it desires CPU processing. The CPU

ceaselessly check every and each device hooked up thereto for sleuthing whether or not any device

desires hardware attention.

Each device features a command-ready bit that indicates the standing of that device, i.e., whether or

not it’s some command to be dead by hardware or not. If command bit is ready one, then it’s some

command to be dead else if the bit is zero, then it’s no commands.

Let’s see that the difference between interrupt and polling:

S.NO INTERRUPT
POLLING

1.

In interrupt, the

device notices the

CPU that it

requires its

attention.

Whereas, in polling,

CPU steadily checks

whether the device

needs attention.

2.

An interrupt is not

a protocol, its a

hardware

mechanism.

Whereas it isn’t a

hardware mechanism,

its a protocol.

3.

In interrupt, the

device is serviced

by interrupt

handler.

While in polling, the

device is serviced by

CPU.

4.

Interrupt can take

place at any time.

Whereas CPU

steadily ballots the

device at regular or

https://www.geeksforgeeks.org/io-interface-interrupt-dma-mode/

S.NO INTERRUPT
POLLING

proper interval.

5.

In interrupt,

interrupt request

line is used as

indication for

indicating that

device requires

servicing.

While in polling,

Command ready bit is

used as indication for

indicating that device

requires servicing.

6.

In interrupts,

processor is simply

disturbed once any

device interrupts it.

On the opposite hand,

in polling, processor

waste countless

processor cycles by

repeatedly checking

the command-ready

little bit of each

device.

54. What is the role of Common Bus System?

Ans: A basic computer has 8 registers, memory unit and a control unit. The diagram of the common

bus system is as shown below.

Connections:

The outputs of all the registers except the OUTR (output register) are connected to the common bus.

The output selected depends upon the binary value of variables S2, S1 and S0. The lines from

common bus are connected to the inputs of the registers and memory. A register receives the

information from the bus when its LD (load) input is activated while in case of memory the Write

input must be enabled to receive the information. The contents of memory are placed onto the bus

when its Read input is activated.

Various Registers:

4 registers DR, AC, IR and TR have 16 bits and 2 registers AR and PC have 12 bits. The INPR and

OUTR have 8 bits each. The INPR receives character from input device and delivers it to the AC

while the OUTR receives character from AC and transfers it to the output device. 5 registers have 3

control inputs LD (load), INR (increment) and CLR (clear). These types of registers are similar to a

binary counter.

ABBREVIATION

REGISTER

NAME

OUTR

Output

register

TR

Temporary

register

IR

Instruction

register

INPR

Input

register

AC
Accumulator

DR
Data register

PC

Program

counter

AR

Address

register

Adder and logic circuit:

The adder and logic circuit provides the 16 inputs of AC. This circuit has 3 sets of inputs. One set

comes from the outputs of AC which implements register micro operations. The other set comes

from the DR (data register) which are used to perform arithmetic and logic micro operations. The

result of these operations is sent to AC while the end around carry is stored in E as shown in diagram.

The third set of inputs is from INPR.

Note:

The content of any register can be placed on the common bus and an operation can be performed in

the adder and logic circuit during the same clock cycle.

55. What do you mean by DMA?

Ans: DMA stands for "Direct Memory Access" and is a method of transferring data from

the computer's RAM to another part of the computer without processing it using the CPU. While

most data that is input or output from your computer is processed by the CPU, some data does not

require processing, or can be processed by another device.

In these situations, DMA can save processing time and is a more efficient way to move data from the

computer's memory to other devices. In order for devices to use direct memory access, they must be

assigned to a DMA channel. Each type of port on a computer has a set of DMA channels that can be

assigned to each connected device. For example, a PCI controller and a hard drive controller each

have their own set of DMA channels.

For example, a sound card may need to access data stored in the computer's RAM, but since it can

process the data itself, it may use DMA to bypass the CPU. Video cards that support DMA can also

access the system memory and process graphics without needing the CPU. Ultra DMA hard drives

use DMA to transfer data faster than previous hard drives that required the data to first be run

through the CPU.

An alternative to DMA is the Programmed Input/Output (PIO) interface in which all data transmitted

between devices goes through the processor. A newer protocol for the ATAIIDE interface is Ultra

DMA, which provides a burst data transfer rate up to 33 mbps. Hard drives that come with Ultra

DMAl33 also support PIO modes 1, 3, and 4, and multiword DMA mode 2 at 16.6 mbps.

56. What do know about Input-Output Processor (IOP) or IO channel?

Ans: The DMA mode of data transfer reduces CPU’s overhead in handling I/O operations. It also

allows parallelism in CPU and I/O operations. Such parallelism is necessary to avoid wastage of

https://ecomputernotes.com/fundamental/introduction-to-computer/direct-memory-access
https://ecomputernotes.com/fundamental/introduction-to-computer/direct-memory-access
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
https://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
https://ecomputernotes.com/computernetworkingnotes/computer-network/protocol
https://ecomputernotes.com/images/Direct-Memory-Access.jpg

valuable CPU time while handling I/O devices whose speeds are much slower as compared to CPU.

The concept of DMA operation can be extended to relieve the CPU further from getting involved

with the execution of I/O operations. This gives rises to the development of special purpose

processor called Input-Output Processor (IOP) or IO channel.

The Input Output Processor (IOP) is just like a CPU that handles the details of I/O operations. It is

more equipped with facilities than those are available in typical DMA controller. The IOP can fetch

and execute its own instructions that are specifically designed to characterize I/O transfers. In

addition to the I/O – related tasks, it can perform other processing tasks like arithmetic, logic,

branching and code translation. The main memory unit takes the pivotal role. It communicates with

processor by the means of DMA.

The block diagram –

The Input Output Processor is a specialized processor which loads and stores data into memory along

with the execution of I/O instructions. It acts as an interface between system and devices. It involves

a sequence of events to executing I/O operations and then store the results into the memory.

Advantages –

 The I/O devices can directly access the main memory without the intervention by the processor in

I/O processor based systems.

 It is used to address the problems that are arises in Direct memory access method.

Objective

57. Technically speaking, what is the most accurate description of a peripheral device?

 a) A device that is connected to a computer but is not part of the core computer architecture

 b) A device that plugs into a computer using a USB connection

 c) A device that provides input and output functions for a computer system

 d) A device connected to a computer using a cable.

 Ans: a)

58. What are the three general types of peripheral devices?

 a) Input, output and storage

 b) Mouse, keyboard and monitor

 c) Audio, video and print output.

 d) Internal, wired external and wireless external.

 Ans: a)

59. Which of the following is NOT a computer peripheral?

 a) Central processing unit

 b) Scanner

 b) Printer

 d) Microphone

 Ans: a)

60. The interrupt-request line is a part of the ___________

 a) Data line b) Control line c) Address line d) None of the mentioned

 Ans: b)

61. The return address from the interrupt-service routine is stored on the ___________

 a) System heap b) Processor register c) Processor stack d) Memory

 Ans: c)

62. The signal sent to the device from the processor to the device after receiving an interrupt is

 a) Interrupt-acknowledge b) Return signal c) Service signal d) Permission

signal

 Ans: a)

63. When the process is returned after an interrupt service ______ should be loaded again.

i) Register contents

ii) Condition codes

iii) Stack contents

iv) Return addresses

 a) i, iv b) ii, iii and iv c) iii, iv d) i, ii

 Ans: d)

64. The time between the receiver of an interrupt and its service is ______

 a) Interrupt delay b) Interrupt latency c) Cycle time d) Switching time

 Ans: b)

65. Interrupts form an important part of _____ systems.

 a) Batch processing b) Multitasking c) Real-time processing d) Multi-user

 Ans: c)

66. An interrupt that can be temporarily ignored is ___________

 a) Vectored interrupt b) Non-maskable interrupt

 c) Maskable interrupt d) High priority interrupt

 Ans: c)

 Module 3

67. What are the Difference between RISC and CISC processor?

Ans: Below are few differences between RISC and CISC:

CISC
RISC

A large number of instructions

are present in the architecture.

Very fewer instructions are present.

The number of instructions are

generally less than 100.

Some instructions with long

execution times. These include

instructions that copy an entire

block from one part of memory

to another and others that copy

multiple registers to and from

memory.

No instruction with a long execution

time due to very simple instruction

set. Some early RISC machines did

not even have an integer multiply

instruction, requiring compilers to

implement multiplication as a

sequence of additions.

Variable-length encodings of the

instructions.

Example: IA32 instruction size

can range from 1 to 15 bytes.

Fixed-length encodings of the

instructions are used.

Example: In IA32, generally all

instructions are encoded as 4 bytes.

Multiple formats are supported

for specifying operands. A

memory operand specifier can

have many different

combinations of displacement,

base and index registers.

Simple addressing formats are

supported. Only base and

displacement addressing is allowed.

CISC supports array.
RISC does not supports array.

Arithmetic and logical operations

can be applied to both memory

and register operands.

Arithmetic and logical operations

only use register operands. Memory

referencing is only allowed by load

and store instructions, i.e. reading

from memory into a register and

writing from a register to memory

respectively.

Implementation programs are

hidden from machine level

programs. The ISA provides a

clean abstraction between

Implementation programs exposed

to machine level programs. Few

RISC machines do not allow specific

CISC
RISC

programs and how they get

executed.

instruction sequences.

Condition codes are used.
No condition codes are used.

The stack is being used for

procedure arguments and return

addresses.

Registers are being used for

procedure arguments and return

addresses. Memory references can

be avoided by some procedures.

68. Define the concept of classification of Microprocessors.

Ans: A Microprocessor is an important part of a computer architecture without which you will not be able to

perform anything on your computer. It is a programmable device that takes in input perform some arithmetic and

logical operations over it and produce desired output. In simple words, a Microprocessor is a digital device on a

chip which can fetch instruction from memory, decode and execute them and give results.

Basics of Microprocessor –

A Microprocessor takes a bunch of instructions in machine language and executes them, telling the

processor what it has to do. Microprocessor performs three basic things while executing the instruction:

1. It performs some basic operations like addition, subtraction, multiplication, division and some logical

operations using its Arithmetic and Logical Unit (ALU). New Microprocessors also perform

operations on floating point numbers also.

2. Data in Microprocessor can move from one location to another.

3. It has a Program Counter (PC) register that stores the address of next instruction based on the value

of PC, Microprocessor jumps from one location to another and takes decision.

A typical Microprocessor structure looks like this.

Clock Speed of different Microprocessor:

 16-bit Microprocessor –

 8086: 4.7MHz, 8MHz, 10MHz

 8088: more than 5MHz

 80186/80188: 6MHz

80286: 8MHz

 32-bit Microprocessor –

 INTEL 80386: 16MHz to 33MHz

 INTEL 80486: 16MHz to 100MHz

PENTIUM: 66MHz

 64-bit Microprocessor –

 INTEL CORE-2: 1.2GHz to 3GHz

 INTEL i7: 66GHz to 3.33GHz

 INTEL i5: 2.4GHz to 3.6GHz

INTEL i3: 2.93GHz to 3.33GHz

We do not have any 128-bit Microprocessor in work at present one among the reasons for this is that we

are a long way from exhausting the 64 bit address space itself, we use it a constant rate of roughly 2 bits

every 3 years. At present we have only used 48 bits of 64 bits so why require 128 bit address space. Also

128 bit Microprocessor would be much slower than the 64 bit Microprocessor.

Types of Processor:

 Complex Instruction Set Computer (CISC) –

CISC or Complex Instruction Set Computer is a computer architecture where instructions are such

that a single instruction can execute multiple low level operations like loading from memory, storing

into memory or an arithmetic operation etc. It has multiple addressing nodes within single

instruction.CISC makes use of very few registers.

Example:

1. Intel 386

2. Intel 486

3. Pentium

4. Pentium Pro

5. Pentium II

6. Pentium III

7. Motorola 68000

8. Motorola 68020

9. Motorola 68040 etc.

 Reduced Instruction Set Computer (RISC) –

RISC or Reduced Instruction Set Computer is a computer architecture where instruction are simple

and designed to get executed quickly. Instructions get completed in one clock cycle this is because of

the optimization of instructions and pipelining (a technique that allows for simultaneous execution of

parts, or stages, of instructions to more efficiently process instructions). RISC makes use of multiple

registers to avoid large interactions with memory. It has few addressing nodes.

Example:

1. IBM RS6000

2. MC88100

3. DEC Alpha 21064

4. DEC Alpha 21164

5. DEC Alpha 21264

 Explicitly Parallel Instruction Computing (EPIC) –

EPIC or Explicitly Parallel Instruction Computing permits computer to execute instructions parallel

using compilers.It allows complex instructions execution without using higher clock

frequencies.EPIC encodes its instruction into 128 bit bundles.each bundle contains three instructions

which are encoded in 41 bits each and a 5-bit template field(contains information about types of

instructions in bundle and which instructions can be executed in parallel).

Example:

1. IA-64 (Intel Architecture-64)

69. What are the characterstics of a micro processor?

Ans: Characteristics of Microprocessors

A Microprocessor’s performance depends on the following characteristics:

· Clock speed

· Instruction set

· Word size

a) Clock Speed

Every microprocessor has an internal clock that regulates the speed at which it executes instructions.

The speed at which the microprocessor executes instructions is called the clock speed. Clock speed is

measured in MHz (Mega Hertz) or in GHz (Giga Hertz).

b) Instruction Set

A command which is given to a computer to perform an operation on data is called an instruction.

Basic set of machine level instructions that a microprocessor is designed to execute is called as

an instruction set. This instruction set carries out the following types of operations:

• Data transfer

• Arithmetic operations

• Logical operations

• Control flow

• Input/output

c) Word Size

The number of bits that can be processed by a processor in a single instruction is called its word

size. Word size determines the amount of RAM that can be accessed by a microprocessor at one time

and the total number of pins on the microprocessor. Total number of input and output pins in turn

determines the architecture of the microprocessor.

Speed Measurement

Hertz – abbreviated as Hz is the standard unit of measurement used for measuring frequency.

Since frequency is measured in cycles per second, one hertz equals one cycle per second.

Hertz is commonly used to measure wave frequencies, such as sound waves, light waves, and radio

waves. For example, the average human ear can detect sound waves between 20 and 20,000 Hz. Sound

waves close to 20 Hz have a low pitch and are called "bass" frequencies. Sound waves above 5,000 Hz

have a high pitch and are called "treble" frequencies.

While hertz can be used to measure wave frequencies, it is also used to measure the speed of computer

processors. For example, each CPU is rated at a specific clock speed. This number indicates how many

instruction cycles the processor can perform in every second. Since modern processors can perform

millions or even billions of instructions per second, clock speeds are typically measured in megahertz or

gigahertz.

70. What is Vector processor classification?

Ans: According to from where the operands are retrieved in a vector processor, pipe lined vector

computers are classified into two architectural configurations:

1. Memory to memory architecture –

In memory to memory architecture, source operands, intermediate and final results are retrieved

(read) directly from the main memory. For memory to memory vector instructions, the information

of the base address, the offset, the increment, and the vector length must be specified in order to

enable streams of data transfers between the main memory and pipelines. The processors like TI-

ASC, CDC STAR-100, and Cyber-205 have vector instructions in memory to memory formats. The

main points about memory to memory architecture are:

 There is no limitation of size

 Speed is comparatively slow in this architecture

2. Register to register architecture –

In register to register architecture, operands and results are retrieved indirectly from the main

memory through the use of large number of vector registers or scalar registers. The processors

like Cray-1 and the Fujitsu VP-200 use vector instructions in register to register formats. The main

points about register to register architecture are:

 Register to register architecture has limited size.

 Speed is very high as compared to the memory to memory architecture.

 The hardware cost is high in this architecture.

A block diagram of a modern multiple pipeline vector computer is shown below:

A typical pipe lined vector processor.

71. List out the difference between Desktop and Tablets.

Ans:

1. Desktop : Desktop is a physical computer unit that consists of a monitor, CPU, key-board and a

mouse. It is a graphical user work space on a software operating system. It is designed for regular use

at one location. It requires main power supply so that it can not be portable.

2. Tablet : Tablet or Tablet Computer is a device generally operated with a mobile operating

system. It has the touchscreen display and there is a rechargeable battery inbuilt in it. It is

basically a thin and flat device. It does not have the physical key-board with it. The lasting

time of battery in tablet is more as compared to battery life of the laptop. It is light weighted

and is portable easily.

Difference between Desktop and Tablet :

DESKTOP
TABLET

It is a computer device that

needs external devices to be

fully functional.

It is a touch screen display computer

device which generally operates on

mobile operating systems.

It is large in size.
While it is small in size.

It has a physical key-board

externally connected with it.

While it does not have the physical

key-board, it has onscreen key-board.

It has a separate mouse

connected with it.

While in tablet all the work is done

with touch screen.

It is heavy-weighted in

comparison of tablet.

While it is light-weighted

comparatively.

It is not portable.
While it is easily portable.

It runs on main power

supply.
While it runs on battery.

It has very powerful

processor.

While it is operated with mobile

operating system.

The repairing of desktops is

easy work as compared to

tablets.

While the repairing of tablets is little

complex.

It has wide rage of screen

size.

While the range of screen size in

tablets is limited.

Components of desktop can

be easily removed.

Components of tablets are not

removable.

It does not have slot for sim-

cards.

Some tablets may have slot for sim-

cards.

It is more expensive than

tablet.

While it is less expensive

comparatively.

It has more features in
It has less features comparatively.

DESKTOP
TABLET

comparison of tablet.

It may have CD or DVD

player inbuilt in CPU.

While it does not have such

functionality.

72. What is the characteristic of RISC?

Ans: Characteristic of RISC –

1. Simpler instruction, hence simple instruction decoding.

2. Instruction come under size of one word.

3. Instruction take single clock cycle to get executed.

4. More number of general purpose register.

5. Simple Addressing Modes.

6. Less Data types.

7. Pipeling can be achieved.

73. What are the characteristic of CISC ?

Ans: Characteristic of CISC –

1. Complex instruction, hence complex instruction decoding.

2. Instruction are larger than one word size.

3. Instruction may take more than single clock cycle to get executed.

4. Less number of general purpose register as operation get performed in memory itself.

5. Complex Addressing Modes.

6. More Data types.

74. What are the characteristics of Parallel processing?

Ans: A parallel processing system has the following characteristics:

 Each processor in a system can perform tasks concurrently.

 Tasks may need to be synchronized.

 Nodes usually share resources, such as data, disks, and other devices.

75. Write the advantages of Parallel Computing over Serial Computing.

Ans: Before taking a toll on Parallel Computing, first let’s take a look at the background of computations of a

computer software and why it failed for the modern era.

Computer software were written conventionally for serial computing. This meant that to solve a

problem, an algorithm divides the problem into smaller instructions. These discrete instructions are then

executed on Central Processing Unit of a computer one by one. Only after one instruction is finished,

next one starts.

Real life example of this would be people standing in a queue waiting for movie ticket and there is only

cashier.Cashier is giving ticket one by one to the persons. Complexity of this situation increases when

there are 2 queues and only one cashier.

So, in short Serial Computing is following:

1. In this, a problem statement is broken into discrete instructions.

2. Then the instructions are executed one by one.

3. Only one instruction is executed at any moment of time.

Look at point 3. This was causing a huge problem in computing industry as only one instruction was

getting executed at any moment of time. This was a huge waste of hardware resources as only one part

of the hardware will be running for a particular instruction and of time. As problem statements were

getting heavier and bulkier, so does the amount of time in execution of those statements. Example of

processors are Pentium 3 and Pentium 4.

Now let’s come back to our real life problem. We could definitely say that complexity will decrease

when there are 2 queues and 2 cashier giving tickets to 2 persons simultaneously. This is an example of

Parallel Computing.

Parallel Computing –

It is the use of multiple processing elements simultaneously for solving any problem. Problems are

broken down into instructions and are solved concurrently as each resource which has been applied to

work is working at the same time.

Advantages of Parallel Computing over Serial Computing are as follows:

1. It saves time and money as many resources working together will reduce the time and cut potential

costs.

2. It can be impractical to solve larger problems on Serial Computing.

3. It can take advantage of non-local resources when the local resources are finite.

4. Serial Computing ‘wastes’ the potential computing power, thus Parallel Computing makes better

work of hardware.

Types of Parallelism:

1. Bit-level parallelism: It is the form of parallel computing which is based on the increasing

processor’s size. It reduces the number of instructions that the system must execute in order to

perform a task on large-sized data.

Example: Consider a scenario where an 8-bit processor must compute the sum of two 16-bit integers.

It must first sum up the 8 lower-order bits, then add the 8 higher-order bits, thus requiring two

instructions to perform the operation. A 16-bit processor can perform the operation with just one

instruction.

2. Instruction-level parallelism: A processor can only address less than one instruction for each clock

cycle phase. These instructions can be re-ordered and grouped which are later on executed

concurrently without affecting the result of the program. This is called instruction-level parallelism.

3. Task Parallelism: Task parallelism employs the decomposition of a task into subtasks and then

allocating each of the subtasks for execution. The processors perform execution of sub tasks

concurrently.

Why parallel computing?

 The whole real world runs in dynamic nature i.e. many things happen at a certain time but at different

places concurrently. This data is extensively huge to manage.

 Real world data needs more dynamic simulation and modeling, and for achieving the same, parallel

computing is the key.

 Parallel computing provides concurrency and saves time and money.

 Complex, large datasets, and their management can be organized only and only using parallel

computing’s approach.

 Ensures the effective utilization of the resources. The hardware is guaranteed to be used effectively

whereas in serial computation only some part of hardware was used and the rest rendered idle.

 Also, it is impractical to implement real-time systems using serial computing.

Applications of Parallel Computing:

 Data bases and Data mining.

 Real time simulation of systems.

 Science and Engineering.

 Advanced graphics, augmented reality and virtual reality.

Limitations of Parallel Computing:

 It addresses such as communication and synchronization between multiple sub-tasks and processes

which is difficult to achieve.

 The algorithms must be managed in such a way that they can be handled in the parallel mechanism.

 The algorithms or program must have low coupling and high cohesion. But it’s difficult to create

such programs.

 More technically skilled and expert programmers can code a parallelism based program well.

Future of Parallel Computing: The computational graph has undergone a great transition from serial

computing to parallel computing. Tech giant such as Intel has already taken a step towards parallel

computing by employing multicore processors. Parallel computation will revolutionize the way

computers work in the future, for the better good. With all the world connecting to each other even more

than before, Parallel Computing does a better role in helping us stay that way. With faster networks,

distributed systems, and multi-processor computers, it becomes even more necessary.

76. Explain Pipelining and its types.

 Ans: To improve the performance of a CPU we have two options:

1) Improve the hardware by introducing faster circuits.

2) Arrange the hardware such that more than one operation can be performed at the same time.

Since, there is a limit on the speed of hardware and the cost of faster circuits is quite high, we have to adopt the

2
nd

 option.

Pipelining : Pipelining is a process of arrangement of hardware elements of the CPU such that its overall performance

is increased. Simultaneous execution of more than one instruction takes place in a pipelined processor.

Let us see a real life example that works on the concept of pipelined operation. Consider a water bottle packaging

plant. Let there be 3 stages that a bottle should pass through, Inserting the bottle(I), Filling water in the bottle(F), and

Sealing the bottle(S). Let us consider these stages as stage 1, stage 2 and stage 3 respectively. Let each stage take 1

minute to complete its operation.

Now, in a non pipelined operation, a bottle is first inserted in the plant, after 1 minute it is moved to stage 2 where

water is filled. Now, in stage 1 nothing is happening. Similarly, when the bottle moves to stage 3, both stage 1 and

stage 2 are idle. But in pipelined operation, when the bottle is in stage 2, another bottle can be loaded at stage 1.

Similarly, when the bottle is in stage 3, there can be one bottle each in stage 1 and stage 2. So, after each minute, we

get a new bottle at the end of stage 3. Hence, the average time taken to manufacture 1 bottle is :

Without pipelining = 9/3 minutes = 3m

I F S | | | | | |

| | | I F S | | |

| | | | | | I F S (9 minutes)

With pipelining = 5/3 minutes = 1.67m

I F S | |

| I F S |

| | I F S (5 minutes)

Thus, pipelined operation increases the efficiency of a system.

Design of a basic pipeline

 In a pipelined processor, a pipeline has two ends, the input end and the output end. Between these ends, there

are multiple stages/segments such that output of one stage is connected to input of next stage and each stage

performs a specific operation.

 Interface registers are used to hold the intermediate output between two stages. These interface registers are

also called latch or buffer.

 All the stages in the pipeline along with the interface registers are controlled by a common clock.

77. What are important factors in the Design of a basic pipeline?

Ans: There are many factors that affect the pipe-wall-thickness requirement, which include:

 The maximum and working pressures

 Maximum and working temperatures

 Chemical properties of the fluid

 The fluid velocity

 The pipe material and grade

 The safety factor or code design application

78. Discuss the importance of Pipeline Stages in Pipelining.

Ans: Pipeline Stages

RISC processor has 5 stage instruction pipeline to execute all the instructions in the RISC instruction set. Following

are the 5 stages of RISC pipeline with their respective operations:

 Stage 1 (Instruction Fetch)

In this stage the CPU reads instructions from the address in the memory whose value is present in the program

counter.

 Stage 2 (Instruction Decode)

In this stage, instruction is decoded and the register file is accessed to get the values from the registers used in

the instruction.

 Stage 3 (Instruction Execute)

In this stage, ALU operations are performed.

 Stage 4 (Memory Access)

In this stage, memory operands are read and written from/to the memory that is present in the instruction.

 Stage 5 (Write Back)

In this stage, computed/fetched value is written back to the register present in the instructions.

79. How you will calculate Performance of a pipelined processor?

Ans: Consider a ‘k’ segment pipeline with clock cycle time as ‘Tp’. Let there be ‘n’ tasks to be completed in the

pipelined processor. Now, the first instruction is going to take ‘k’ cycles to come out of the pipeline but the other

‘n – 1’ instructions will take only ‘1’ cycle each, i.e, a total of ‘n – 1’ cycles. So, time taken to execute ‘n’

instructions in a pipelined processor:

 ETpipeline = k + n – 1 cycles

 = (k + n – 1) Tp

In the same case, for a non-pipelined processor, execution time of ‘n’ instructions will be:

 ETnon-pipeline = n * k * Tp

So, speedup (S) of the pipelined processor over non-pipelined processor, when ‘n’ tasks are executed on

the same processor is:

 S = Performance of pipelined processor /

 Performance of Non-pipelined processor

As the performance of a processor is inversely proportional to the execution time, we have,

 S = ETnon-pipeline / ETpipeline

 => S = [n * k * Tp] / [(k + n – 1) * Tp]

 S = [n * k] / [k + n – 1]

When the number of tasks ‘n’ are significantly larger than k, that is, n >> k

 S = n * k / n

 S = k

where ‘k’ are the number of stages in the pipeline.

Also, Efficiency = Given speed up / Max speed up = S / Smax

We know that, Smax = k

So, Efficiency = S / k

80. Write all the dependencies possible in a pipelined processor.

Ans: Dependencies in a pipelined processor

There are mainly three types of dependencies possible in a pipelined processor. These are :

1) Structural Dependency

2) Control Dependency

3) Data Dependency

These dependencies may introduce stalls in the pipeline.

Stall : A stall is a cycle in the pipeline without new input.

Structural dependency

This dependency arises due to the resource conflict in the pipeline. A resource conflict is a situation

when more than one instruction tries to access the same resource in the same cycle. A resource can be a

register, memory, or ALU.

Example:

INSTRUCTION /

CYCLE 1 2 3 4
5

I1 IF(Mem) ID EX Mem

I2

IF(Mem) ID EX

I3

IF(Mem) ID
EX

I4

IF(Mem)
ID

In the above scenario, in cycle 4, instructions I1 and I4 are trying to access same resource (Memory)

which introduces a resource conflict.

To avoid this problem, we have to keep the instruction on wait until the required resource (memory in

our case) becomes available. This wait will introduce stalls in the pipeline as shown below:

CYC

LE 1 2 3 4 5 6 7
8

I1

IF(M

em) ID EX

M

e

m

W

B

I2

IF(M

em) ID

E

X

M

e

m

W

B

I3

IF(M

em) ID

E

X

M

e

m WB

I4

– – –

IF(M

em)

Solution for structural dependency

To minimize structural dependency stalls in the pipeline, we use a hardware mechanism called

Renaming.

Renaming : According to renaming, we divide the memory into two independent modules used to store

the instruction and data separately called Code memory(CM) and Data memory(DM) respectively. CM

will contain all the instructions and DM will contain all the operands that are required for the

instructions.

INSTRUC

TION/

CYCLE 1 2 3 4 5 6
7

I1

IF(

CM

) ID EX DM WB

I2

IF(

CM

) ID EX DM WB

I3

IF(

CM

) ID EX DM
WB

I4

IF(

CM

) ID EX
DM

I5

IF(

CM

) ID
EX

I6

IF(

CM

)
ID

I7

IF(

CM

)

Control Dependency (Branch Hazards)

This type of dependency occurs during the transfer of control instructions such as BRANCH, CALL,

JMP, etc. On many instruction architectures, the processor will not know the target address of these

instructions when it needs to insert the new instruction into the pipeline. Due to this, unwanted

instructions are fed to the pipeline.

Consider the following sequence of instructions in the program:

100: I1

101: I2 (JMP 250)

102: I3

.

.

250: BI1

Expected output: I1 -> I2 -> BI1

NOTE: Generally, the target address of the JMP instruction is known after ID stage only.

INSTRUCTION/

CYCLE 1 2 3 4 5
6

INSTRUCTION/

CYCLE 1 2 3 4 5
6

I1 IF ID EX MEM WB

I2

IF

ID

(PC:250) EX Mem
WB

I3

IF ID EX
Mem

BI1

IF ID
EX

Output Sequence: I1 -> I2 -> I3 -> BI1

So, the output sequence is not equal to the expected output, that means the pipeline is not implemented

correctly.

To correct the above problem we need to stop the Instruction fetch until we get target address of branch

instruction. This can be implemented by introducing delay slot until we get the target address.

INSTRUCTION/

CYCLE 1 2 3 4 5
6

I1 IF ID EX MEM WB

I2

IF

ID

(PC:250) EX Mem
WB

Delay – – – – –
–

BI1

IF ID
EX

Output Sequence: I1 -> I2 -> Delay (Stall) -> BI1

As the delay slot performs no operation, this output sequence is equal to the expected output sequence.

But this slot introduces stall in the pipeline.

Solution for Control dependency Branch Prediction is the method through which stalls due to control

dependency can be eliminated. In this at 1st stage prediction is done about which branch will be

taken.For branch prediction Branch penalty is zero.

Branch penalty : The number of stalls introduced during the branch operations in the pipelined

processor is known as branch penalty.

NOTE : As we see that the target address is available after the ID stage, so the number of stalls

introduced in the pipeline is 1. Suppose, the branch target address would have been present after the

ALU stage, there would have been 2 stalls. Generally, if the target address is present after the k
th

 stage,

then there will be (k – 1) stalls in the pipeline.

Total number of stalls introduced in the pipeline due to branch instructions = Branch frequency *

Branch Penalty

Data Dependency (Data Hazard)

Let us consider an ADD instruction S, such that

S : ADD R1, R2, R3

Addresses read by S = I(S) = {R2, R3}

Addresses written by S = O(S) = {R1}

Now, we say that instruction S2 depends in instruction S1, when

This condition is called Bernstein condition.

Three cases exist:

 Flow (data) dependence: O(S1) ∩ I (S2), S1 → S2 and S1 writes after something read by S2

 Anti-dependence: I(S1) ∩ O(S2), S1 → S2 and S1 reads something before S2 overwrites it

 Output dependence: O(S1) ∩ O(S2), S1 → S2 and both write the same memory location.

Example: Let there be two instructions I1 and I2 such that:

I1 : ADD R1, R2, R3

I2 : SUB R4, R1, R2

When the above instructions are executed in a pipelined processor, then data dependency condition will

occur, which means that I2 tries to read the data before I1 writes it, therefore, I2 incorrectly gets the old

value from I1.

INSTRUCTION / CYCLE 1 2 3
4

I1 IF ID EX
DM

I2

IF ID(Old value)
EX

To minimize data dependency stalls in the pipeline, operand forwarding is used.

Operand Forwarding : In operand forwarding, we use the interface registers present between the

stages to hold intermediate output so that dependent instruction can access new value from the interface

register directly.

Considering the same example:

I1 : ADD R1, R2, R3

I2 : SUB R4, R1, R2

INSTRUCTION / CYCLE 1 2 3
4

I1 IF ID EX
DM

I2

IF ID
EX

Data Hazards

Data hazards occur when instructions that exhibit data dependence, modify data in different stages of a

pipeline. Hazard cause delays in the pipeline. There are mainly three types of data hazards:

https://media.geeksforgeeks.org/wp-content/uploads/formula-41.jpg

1) RAW (Read after Write) [Flow/True data dependency]

2) WAR (Write after Read) [Anti-Data dependency]

3) WAW (Write after Write) [Output data dependency]

Let there be two instructions I and J, such that J follow I. Then,

 RAW hazard occurs when instruction J tries to read data before instruction I writes it.

Eg:

I: R2 <- R1 + R3

J: R4 <- R2 + R3

 WAR hazard occurs when instruction J tries to write data before instruction I reads it.

Eg:

I: R2 <- R1 + R3

J: R3 <- R4 + R5

 WAW hazard occurs when instruction J tries to write output before instruction I writes it.

Eg:

I: R2 <- R1 + R3

J: R2 <- R4 + R5

WAR and WAW hazards occur during the out-of-order execution of the instructions.

81. What is Data Hazards?

Ans: Data hazards occur when instructions that exhibit data dependence modify data in different

stages of a pipeline. Ignoring potential data hazards can result in race conditions (also termed

race hazards). There are three situations in which a data hazard can occur: read after write (RAW), a

true dependency.

82. What is the Vector Instruction Format in Vector Processors?

Ans: Different Instruction formats are used by different vector processors. Vector instructions are

generally specified by some fields. The main fields that are used in vector instruction set are given below:

1. Operations Code (Opcode) –
The operation code must be specified to select the functional unit or to reconfigure a multi-functional

unit to perform the specified operation dictated by this field. Usually, microcode control is used to set

up the required resources.

For example:
Opcode – 0001 mnemonic – ADD operation – add the content of memory to the content of accumulator

Opcode – 0010 mnemonic – SUB operation – subtract the content of memory to the content of

accumulator

Opcode – 1111 mnemonic – HLT operation – stop processing

2. Base addresses –
For a memory reference instruction, the base addresses are needed for both source operands and result

vectors. The designated vector registers must be specified in the instruction, if the operands and results

are located in the vector register file, i.e., collection of registers.

For example:
ADD R1, R2

Here, R1 and R2 are the addresses of the register.

3. Offset (or Displacement) –
This field is required to get the effective memory address of operand vector. The address offset relative

to the base address should be specified. Using the base address and the offset (positive or negative),

the effective address is calculated.

4. Address Increment –
The address increment between the scalar elements of vector operand must be specified. Some

computers, i.e., the increment is always 1. Some other computers, like TI-ASC, can have a variable

increment, which offers higher flexibility in application.

For example:
R1 <- 400

Auto incr-R1 is incremented the value of R1 by 1.

R1 = 399

5. Vector length –
The vector length (positive integer) is needed to determine the termination of a vector instruction.

83. What are the types of Parallelism?

Ans: Types of Parallelism:

1. Bit-level parallelism: It is the form of parallel computing which is based on the increasing

processor’s size. It reduces the number of instructions that the system must execute in order to

perform a task on large-sized data.

Example: Consider a scenario where an 8-bit processor must compute the sum of two 16-bit integers.

It must first sum up the 8 lower-order bits, then add the 8 higher-order bits, thus requiring two

instructions to perform the operation. A 16-bit processor can perform the operation with just one

instruction.

2. Instruction-level parallelism: A processor can only address less than one instruction for each clock

cycle phase. These instructions can be re-ordered and grouped which are later on executed

concurrently without affecting the result of the program. This is called instruction-level parallelism.

3. Task Parallelism: Task parallelism employs the decomposition of a task into subtasks and then

allocating each of the subtasks for execution. The processors perform execution of sub tasks

concurrently.

Objective

84

Ans: c)

______ have

been

developed

specifically

for pipelined

systems.

a) Utility

software

b) Speed up

utilities

c)

Optimizing

compilers

d) None of

the

mentioned

85

Ans: b)

The

pipelining

process is

also called

as ______

a)

Superscalar

operation

b)

Assembly

line

operation

c) Von

Neumann

cycle

d) None of

the

mentioned

86

Ans: b)

The fetch

and

execution

cycles are

interleaved

with the

help of

a)

Modification

in processor

architecture

b) Special

unit

b) Clock d) Control

unit

87

Ans: a)

Each stage

in pipelining

should be

completed

within

cycle.

a) 1 b) 2 c) 3 d) 4

88.

Ans: b)

In pipelining

the task

which

requires the

least time is

performed

first.

a) True b) False c) None d) Equal

89.

Ans: c)

To increase

the speed of

memory

access in

pipelining,

we make use

of _______

a) Special

memory

locations

b) Special

purpose

registers

c) Cache d) Buffers

90.

Ans: d)

The periods

of time when

the unit is

idle is called

as _____

a) Stalls b) Bubbles c) Hazards d) Both

Stalls and

Bubbles

91.

Ans: a)

The

contention

for the usage

of a

hardware

device is

called

a)

Structural

hazard

b) Stalk c) Deadlock d) None of

the

mentioned

92.

Ans: a)

The

situation

wherein the

data of

operands

are not

available is

called

a) Data

hazard

b) Stock c) Deadlock d)

Structural

hazard

93

Ans: d)

The simplest

scheme to

handle

branches is

to

a) Flush the

pipeline

b) Freezing

the pipeline

c) Depth of

the pipeline

d) Both a

and b

 Module 4

94. Difference between Random Access Memory (RAM) and Content Addressable Memory (CAM)

Ans: RAM:

Random Access Memory (RAM) is used to read and write. It is the part of primary memory and used

in order to store running applications (programs) and program’s data for performing operation. It is

mainly of two types: Dynamic RAM (or DRAM) and Static RAM (or SRAM).

CAM:

Content Addressable Memory (CAM) is also known as Associative Memory, in which the user

supplies data word and associative memory searches its entire memory and if the data word is found,

It returns the list of addresses where that data word was located.

95. Difference between Virtual memory and Cache memory.

Ans:

Cache memory increases the accessing speed of CPU. It is not a technique but a memory unit i.e a

storage device. In cache memory, recently used data is copied. Whenever the program is ready to be

executed, it is fetched from main memory and then copied to the cache memory. But, if its copy is

already present in the cache memory then the program is directly executed.

Virtual Memory increases the capacity of main memory. Virtual memory is not a storage unit, its a

technique. In virtual memory, even such programs which have a larger size than the main memory

are allowed to be executed.

Difference between Virtual memory and Cache memory:

S.NO VIRTUAL MEMORY
CACHE MEMORY

1.

Virtual memory

increases the capacity

of main memory.

While cache memory increase the

accessing speed of CPU.

2.

Virtual memory is not

a memory unit, its a

technique.

Cache memory is exactly a memory

unit.

3.

The size of virtual

memory is greater than

the cache memory.

While the size of cache memory is less

than the virtual memory.

4.

Operating System

manages the Virtual

memory.

On the other hand hardware manages

the cache memory.

5.

In virtual memory, The

program with size

larger than the main

memory are executed.

While in cache memory, recently used

data is copied into.

6.

In virtual memory,

mapping frameworks

is needed for mapping

virtual address to

physical address.

While in cache memory, no such

mapping frameworks is needed.

96. Define memory and memory units.

 Ans: Memories are made up of registers. Each register in the memory is one storage location.

Storage location is also called as memory location. Memory locations are identified using Address.

The total number of bit a memory can store is its capacity.

A storage element is called a Cell. Each register is made up of storage element in which one bit of

data is stored. The data in a memory are stored and retrieved by the process

called writing and reading respectively.

A word is a group of bits where a memory unit stores binary information. A word with group of 8

bits is calleda byte.

A memory unit consists of data lines, address selection lines, and control lines that specify the

direction of transfer. The block diagram of a memory unit is shown below:

Data lines provide the information to be stored in memory. The control inputs specify the direction

transfer. The k-address lines specify the word chosen.

When there are k address lines, 2
k
 memory word can be accessed.

97. Define Secondary Memory.

Ans: Secondary memory is where programs and data are kept on a long-term basis.

Common secondary storage devices are the hard disk and optical disks. The hard disk has enormous

storage capacity compared to main memory. The hard disk is usually contained inside the case of a

computer.

98. Define a concept of Memory hierarchy design.

Ans: In the Computer System Design, Memory Hierarchy is an enhancement to organize the memory

such that it can minimize the access time. The Memory Hierarchy was developed based on a program

behavior known as locality of references.The figure below clearly demonstrates the different levels

of memory hierarchy :

This Memory Hierarchy Design is divided into 2 main types:

1. External Memory or Secondary Memory –

Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage devices which are

accessible by the processor via I/O Module.

2. Internal Memory or Primary Memory –

Comprising of Main Memory, Cache Memory & CPU registers. This is directly accessible by the

processor.

We can infer the following characteristics of Memory Hierarchy Design from above figure:

1. Capacity:

It is the global volume of information the memory can store. As we move from top to bottom in the

Hierarchy, the capacity increases.

2. Access Time:

It is the time interval between the read/write request and the availability of the data. As we move

from top to bottom in the Hierarchy, the access time increases.

3. Performance:

Earlier when the computer system was designed without Memory Hierarchy design, the speed gap

increases between the CPU registers and Main Memory due to large difference in access time. This

results in lower performance of the system and thus, enhancement was required. This enhancement

was made in the form of Memory Hierarchy Design because of which the performance of the system

increases. One of the most significant ways to increase system performance is minimizing how far

down the memory hierarchy one has to go to manipulate data.

4. Cost per bit:

As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory is

costlier than External Memory.

99. Define Memory Organisation.

Ans: Memory Organization in Computer Architecture. A memory unit is the collection of storage

units or devices together. The memory unit stores the binary information in the form of bits.

Generally, memory/storage is classified into 2 categories: Volatile Memory: This loses its data,

when power is switched off.

100. What are the difference between Byte Addressable Memory and Word Addressable Memory?

Ans:

BYTE ADDRESSABLE MEMORY
WORD ADDRESSABLE MEMORY

When the data space in the cell = 8

bits then the corresponding address

space is called as Byte Address.

When the data space in the cell = word length

of CPU then the corresponding address space is

called as Word Address.

Based on this data storage

i.e. Bytewise storage, the memory

chip configuration is named as Byte

Addressable Memory.

Based on this data storage i.e. Wordwise

storage, the memory chip configuration is

named as Word Addressable Memory.

For eg. : 64K X 8 chip has 16 bit

Address and cell size = 8 bits (1

Byte) which means that in this chip,

data is stored byte by byte.

For eg. : For a 16-bit CPU, 64K X 16 chip has

16 bit Address & cell size = 16 bits (Word

Length of CPU) which means that in this chip,

data is stored word by word.

NOTE :

i) The most important point to be noted is that in case of either of Byte Address or Word Address, the

address size can be any number of bits (depends on the number of cells in the chip) but the cell

size differs in each case.

ii)The default memory configuration in the Computer design is Byte Addressable .

102. Difference between Register and Memory

Ans:

1. Register :

Registers are the smallest data holding elements that are built into the processor itself. These are the

memory locations that are directly accessible by the processor. It may hold an instruction, a storage

address or any kind of data such as a bit sequence or individual characters. For example, an

instruction may specify that the contents of two defined registers be multiplied together and then

placed in a specific register.

Example: Accumulator register, Program counter, Instruction register, Address register, etc.

2. Memory :

Memory is a hardware device used to store computer programs, instructions and data. The memory

that is internal to the processor is a primary memory (RAM), and the memory that is external to the

processor is a secondary memory (Hard Drive). Memory can also be categorized on the basis of

volatile and non-volatile memory. Volatile memory is memory that loses its contents when the

computer or hardware device loses power. RAM (Random Access Memory) is an example of volatile

memory. Non-volatile memory is the memory that keeps its contents even if power gets

lost. EPROM is an example of non-volatile memory.

Example : RAM, EPROM etc.

https://practice.geeksforgeeks.org/problems/what-is-register
https://www.geeksforgeeks.org/different-types-ram-random-access-memory/
https://www.geeksforgeeks.org/introduction-of-secondary-memory/
https://www.geeksforgeeks.org/random-access-memory-ram-and-read-only-memory-rom/
https://www.geeksforgeeks.org/difference-between-eprom-and-eeprom/

Difference between Register and Memory :

S.NO. REGISTER
MEMORY

1.

Registers hold the

operands or

instruction that CPU

is currently

processing.

Memory holds the

instructions and the

data that the

currently executing

program in CPU

requires.

2.

Register holds the

small amount of data

around 32-bits to 64-

bits.

Memory of the

computer can range

from some GB to

TB.

3.

CPU can operate on

register contents at

the rate of more than

one operation in one

clock cycle.

CPU accesses

memory at the slower

rate than register.

4.

Types are

Accumulator register,

Program counter,

Instruction register,

Address register, etc.

Type of memory are

RAM,etc.

5.

Registers can be

control i.e. you can

store and retrieve

information from

them.

Memory is almost

not controllable.

S.NO. REGISTER
MEMORY

6.

Registers are faster

than memory.

RAM is much slower

than registers.

103. Difference between Memory and Storage.

Ans: Memory

The term memory refers to the component within your computer that allows you to access data that is

stored for a short term. You may recognize this component as DRAM, or dynamic random-access

memory. Your computer performs many operations by accessing data stored in its short-term

memory. Some examples of such operations include editing a document, loading applications and

browsing the Internet. The speed and performance of your system depends on the amount of memory

that is installed on your computer. If you have a desk and a filing cabinet, the desk represents the

memory of your computer. Items you will need to use soon are kept in your desk for easy access.

However, not much can be stored in a desk due to its size limitations.

Storage

Whereas memory refers to the location of short-term data, storage is the component of your computer

that allows you to store and access data on a long-term basis. Usually, storage comes in the form of a

solid-state drive or a hard drive. Storage allows you to access and store your applications, operating

system and files for an indefinite period of time.

While the desk represents the computer's memory, the filing cabinet represents the storage of your

computer. Items that must be kept yet won't necessarily be accessed soon are stored in the filing

cabinet. Due to the size of the filing cabinet, many things can be stored.

An important distinction between memory and storage is that the former clears when the computer is

turned off. On the other hand, storage remains intact no matter how many times you shut off your

computer. Therefore, in the desk and filing cabinet analogy, any files that are left on your desk when

you leave the office will be thrown away. Everything in your filing cabinet will remain.

104. What is CPU register?

Ans: The term CPU Register is often used to refer only to the group of registers that can be directly

indexed for input or output of an instruction, as defined by the instruction set. More properly, these

are called the “architected registers“. For instance, the x86 instruction set defines a set of eight 32-bit

registers, but a CPU that implements the X86 instruction set will contain many more hardware

registers than just these eight.

There are several other classes of registers:

(a) Accumulator: It is most frequently used register used to store data taken from memory. Its

number varies from microprocessor to microprocessor.

(b) General Purpose registers: General purpose registers are used to store data and intermediate

results during program execution. Its contents can be accessed through assembly programming.

(c) Special purpose Registers: Users do not access these registers. These are used by computer

system at the time of program execution. Some types of special purpose registers are given below:

 Memory Address Register (MAR): It stores address of data or instructions to be fetched from

memory.

 Memory Buffer Register (MBR): It stores instruction and data received from the memory and sent

from the memory.

 Instruction Register (IR): Instructions are stored in instruction register. When one instruction is

completed, next instruction is fetched in memory for processing.

 Program Counter (PC): It counts instructions.

The instruction cycle is completed into two phases: (a) Fetch Cycle and (b) Execute Cycle. There

are two parts in instruction- opcode and operand. In fetch cycle opcode of instruction is fetched into

CPU. The opcode, at first, is reached to Data Register (DR), then to Instruction Register (IR).

Decoder accesses the opcode and it decodes opcode and type of operation is declared to CPU and

execution cycle is started.

105. What is Cache memory?

Ans: Cache memory is an extremely fast memory type that acts as a buffer between RAM and the

CPU. It holds frequently requested data and instructions so that they are immediately available to the

CPU when needed. Cache memory is used to reduce the average time to access data from the Main

memory.

106. Difference between Primary and Secondary Memory.

Ans: The difference between Primary memory and Secondary memory:

SR.NO.

PRIMARY

MEMORY
SECONDARY MEMORY

1.

Primary memory is

temporary.

Secondary memory is

permanent.

2.

Primary memory is

directly accessible

by Processor/CPU.

Secondary memory is not

directly accessible by the

CPU.

3.

Nature of Parts of

Primary memory

varies, RAM-

volatile in nature.

ROM- Non-

volatile.

It’s always Non-volatile in

nature.

4.

Primary memory

devices are more

expensive than

secondary storage

devices.

Secondary memory devices

are less expensive when

compared to primary memory

devices.

5.

The memory

devices used for

primary memory

are semiconductor

memories.

The secondary memory

devices are magnetic and

optical memories.

6.

Primary memory is

also known as

Secondary memory is also

known as External memory or

SR.NO.

PRIMARY

MEMORY
SECONDARY MEMORY

Main memory or

Internal memory.

Auxiliary memory.

7.

Examples: RAM,

ROM, Cache

memory, PROM,

EPROM, Registers,

etc.

Examples: Hard Disk, Floppy

Disk, Magnetic Tapes, etc.

107. Difference between Memory based and Register based Addressing Modes.

Ans: Addressing modes are the operations field specifies the operations which need to be

performed. The operation must be executed on some data which is already stored in computer

registers or in the memory. The way of choosing operands during program execution is dependent on

addressing modes of the instruction. “The addressing mode specifies a rule for interpreting or

modifying the address field of the instruction before the operand is actually referenced. “Basically

how we are interpreting the operand which is given in the instruction is known as addressing mode.

Addressing mode very much depend on the type of CPU organisation. There are three types of CPU

organisation:

1. Single Accumulator organisation

2. General register organisation

3. Stack organisation

Addressing modes is used for one or both of the purpose. These can also be said as

the advantages of using addressing mode:

1. To give programming versatility to the user by providing such facilities as pointers to

 memory, counter for loop control, indexing of data, and program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

There are numbers of addressing modes available and it depends on the architecture and CPU

organisation which of the addressing modes can be applied.

MEMORY BASED

ADDRESSING MODES

REGISTER BASED

ADDRESSING MODES

The operand is present in

memory and its address is

given in the instruction itself.

This addressing mode is

taking proper advantage of

memory address, e.g., Direct

addressing mode

An operand will be given in one

of the register and register

number will be provided in the

instruction.With the register

number present in instruction,

operand is fetched, e.g., Register

mode

The memory address

specified in instruction may

give the address where the

effective address is stored in

The register contains the address

of the operand. The effective

address can be derived from the

content of the register specified

MEMORY BASED

ADDRESSING MODES

REGISTER BASED

ADDRESSING MODES

the memory. In this case

effective memory address is

present in the memory address

which is specified in the

instruction, e.g., Indirect

Addressing Mode

in the instruction. The content of

the register might not be the

effective address. This mode

takes full advantage of registers,

e.g., Register indirect mode

The content of base register is

added to the address part of

the instruction to obtain the

effective address. A base

register is assumed to hold a

base address and the address

field of the instruction gives

displacement relative to the

base address, e.g., Base

Register Addressing Mode

If we are having a table of data

and our program needs to access

all the values one by one we need

something which decrements the

program counter/or any register

which has base address. Though

in this case register is basically

decreased, it is register based

addressing mode, e.g., In Auto

decrements mode

The content of the index

register is added to the

address part that is given in

the instruction to obtain the

effective address. Index Mode

is used to access an array

whose elements are in

successive memory locations,

e.g., Indexed Addressing

Mode

If we are having a table of data

and our program needs to access

all the values one by one we need

something which increment the

program counter/or any register

which has base address, e.g.,

Auto increment mode

The content of program

counter is added to the

address part of the instruction

in order to obtain the effective

address. The address part of

the instruction in this case is

usually a signed number

which can be either positive

or negative, e.g., Relative

addressing mode

Instructions generally used for

initializing registers to a constant

value is register based addressing

mode,and this technique is very

useful approach, e.g., Immediate

mode.

Memory based addressing modes are mostly rely on Memory address and content present at some

memory location. Register based addressing modes are mostly rely on Registers and content present

at some register either it is data or some memory address.

108. Define addressing modes.

Ans: Addressing Modes– The term addressing modes refers to the way in which the operand of an

instruction is specified. The addressing mode specifies a rule for interpreting or modifying the

address field of the instruction before the operand is actually executed.

Addressing modes for 8086 instructions are divided into two categories:

1) Addressing modes for data

2) Addressing modes for branch

The 8086 memory addressing modes provide flexible access to memory, allowing you to easily

access variables, arrays, records, pointers, and other complex data types. The key to good assembly

language programming is the proper use of memory addressing modes.

109. Difference between Volatile Memory and Non-Volatile Memory.

Ans:

 Volatile Memory:

It is that the quite hardware that stores information quickly. it’s additionally referred as temporary

memory. The information within the volatile memory is hold on solely till the ability is provided to

the system, once the system is turned off the information gift within the volatile memory is deleted

mechanically. RAM (Random Access Memory) and Cache Memory are the common example of the

volatile memory. It’s quite quick and economical in nature and may be accessed apace.

Non-Volatile Memory:

It is the type of memory in which data or information remains keep within the memory albeit power

is completed. ROM (Read Only Memory) is the most common example of non-volatile memory. it’s

not that a lot of economical and quick in nature as compare to volatile memory however stores

information for the longer amount. Non-volatile memory is slow concerning accessing. All such

information that must be hold on for good or for a extended amount is hold on in non-volatile

memory. Non-volatile memory has a huge impact on a system’s storage capacity.

Let’s see that the difference between volatile and non-volatile memory:

S.NO VOLATILE MEMORY
NON-VOLATILE MEMORY

1.

Volatile memory is the type

of memory in which data

isn’t keep in memory as

before long as power is

gone.

Non-volatile memory is the type of

memory in which data or

information remains keep within the

memory albeit power is completed.

2.

Volatile memory is not a

permanent memory.

Non-volatile memory is a

permanent memory.

3.

It is faster than non-volatile

memory.
It is slow than volatile memory.

4.

RAM is the example of

volatile memory.

ROM is the example of non-

volatile memory.

5. In volatile memory, data can In non-volatile memory, data can

https://www.geeksforgeeks.org/different-types-ram-random-access-memory/
https://www.geeksforgeeks.org/cache-memory/
https://www.geeksforgeeks.org/computer-organization-ram-vs-rom/

S.NO VOLATILE MEMORY
NON-VOLATILE MEMORY

be easily transferred in

comparison of non-volatile

memory.

not be easily transferred in

comparison of volatile memory.

6.

Volatile memory can read

and write.

Non-volatile memory can’t write, it

only read.

7.

Volatile memory has less

storage.

Non-volatile memory has more

storage than volatile memory.

8.

In volatile memory, the

program’s data are stored

which are currently in

process by the CPU.

In non-volatile memory, any kind of

data which has to be saved

permanently are stored.

9.

Volatile memory is more

costly per unit size.

Non-volatile memory is less costly

per unit size.

10.

Volatile memory has a huge

impact on the system’s

performance.

Non-volatile memory has a huge

impact on a system’s storage

capacity.

11.

In volatile memory,

processor has direct access

to data.

In non-volatile memory, processor

has no direct access to data.

12.

Volatile memory chips are

generally lies on the

memory slot.

Non-volatile memory chips are

contained on the motherboard.

110. Difference between Byte Addressable Memory and Word Addressable Memory.

Ans: Memory is a storage component in the Computer used to store application programs. The

Memory Chip is divided into equal parts called as “CELLS”. Each Cell is uniquely identified by a

binary number called as “ADDRESS”. For example, the Memory Chip configuration is represented

as ’64 K x 8′ as shown in the figure below.

The following information can be obtained from the memory chip representation shown above:

1. Data Space in the Chip = 64K X 8

2. Data Space in the Cell = 8 bits

3. Address Space in the Chip = =16 bits

Now we can clearly state the difference between Byte Addressable Memory & Word Addressable

Memory.

BYTE ADDRESSABLE MEMORY
WORD ADDRESSABLE MEMORY

When the data space in the cell = 8

bits then the corresponding address

space is called as Byte Address.

When the data space in the cell = word

length of CPU then the

corresponding address space is called

as Word Address.

Based on this data storage i.e. Bytewise

storage, the memory chip configuration

is named as Byte Addressable

Memory.

Based on this data storage

i.e. Wordwise storage, the memory

chip configuration is named as Word

Addressable Memory.

For eg. : 64K X 8 chip has 16 bit

Address and cell size = 8 bits (1

Byte) which means that in this chip, data

is stored byte by byte.

For eg. : For a 16-bit CPU, 64K X

16 chip has 16 bit Address & cell size

= 16 bits (Word Length of

CPU) which means that in this chip,

data is stored word by word.

NOTE :

i) The most important point to be noted is that in case of either of Byte Address or Word Address, the

address size can be any number of bits (depends on the number of cells in the chip) but the cell

size differs in each case.

ii)The default memory configuration in the Computer design is Byte Addressable .

111. What is Cache Performance and how it is calculated?

Ans: Cache Performance

 Average memory access time is a useful measure to evaluate the performance of a memory-hierarchy

configuration.

 It tells us how much penalty the memory system imposes on each access (on average).

 It can easily be converted into clock cycles for a particular CPU.

 But leaving the penalty in nanoseconds allows two systems with different clock cycles times to be

compared to a single memory system.

Cache Performance

 There may be different penalties for Instruction and Data accesses.

o In this case, you may have to compute them separately.

o This requires knowledge of the fraction of references that are instructions and the fraction

that are data.

 The text gives 75% instruction references to 25% data references.

o We can also compute the write penalty separately from the read penalty.

o This may be necessary for two reasons:

 Miss rates are different for each situation.

 Miss penalties are different for each situation.

 Treating them as a single quantity yields a useful CPU time formula:

An Example

 Compare the performance of a 64KB unified cache with a split cache with 32KB data and 16KB

instruction .

o The miss penalty for either cache is 100 ns, and the CPU clock runs at 200 MHz.

o Don't forget that the cache requires an extra cycle for load and store hits on a unified cache

because of the structural conflict.

o Calculate the effect on CPI rather than the average memory access time.

o Assume miss rates are as follows (Fig. 5.7 in text):

 64K Unified cache: 1.35%

 16K instruction cache: 0.64%

 32K data cache: 4.82%

o Assume a data access occurs once for every 3 instructions, on average.

An Example

 The solution is to figure out the penalty to CPI separately for instructions and data.

 First, we figure out the miss penalty in terms of clock cycles: 100 ns/5 ns = 20 cycles.

o For the unified cache, the per-instruction penalty is (0 + 1.35% x 20) = 0.27 cycles.

o For data accesses, which occur on about 1/3 of all instructions, the penalty is (1 + 1.35% x

20) = 1.27 cycles per access, or 0.42 cycles per instruction.

o The total penalty is 0.69 CPI .

 In the split cache, the per-instruction penalty is (0 + 0.64% x 20) = 0.13 CPI.

o For data accesses, it is (0 + 4.82% x 20) x (1/3) = 0.32 CPI.

o The total penalty is 0.45 CPI .

 In this case, the split cache performs better because of the lack of a stall on data accesses.

60. Define Cache Memory in Computer Organization.

Ans: Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing

with high-speed CPU. Cache memory is costlier than main memory or disk memory but economical

than CPU registers. Cache memory is an extremely fast memory type that acts as a buffer between

RAM and the CPU. It holds frequently requested data and instructions so that they are immediately

available to the CPU when needed.

Cache memory is used to reduce the average time to access data from the Main memory. The cache

is a smaller and faster memory which stores copies of the data from frequently used main memory

locations. There are various different independent caches in a CPU, which store instructions and data.

61. How cache mapping is done?

Ans: When cache hit occurs,

 The required word is present in the cache memory.

 The required word is delivered to the CPU from the cache memory.

When cache miss occurs,

 The required word is not present in the cache memory.

 The page containing the required word has to be mapped from the main memory.

 This mapping is performed using cache mapping techniques.

In this article, we will discuss different cache mapping techniques.

Cache Mapping-

 Cache mapping defines how a block from the main memory is mapped to the cache memory in case

of a cache miss.

OR

 Cache mapping is a technique by which the contents of main memory are brought into the cache

memory.

The following diagram illustrates the mapping process-

Now, before proceeding further, it is important to note the following points-

NOTES

 Main memory is divided into equal size partitions called as blocks or frames.

 Cache memory is divided into partitions having same size as that of blocks called

as lines.

 During cache mapping, block of main memory is simply copied to the cache and the

block is not actually brought from the main memory.

Cache Mapping Techniques-

Cache mapping is performed using following three different techniques-

1. Direct Mapping

2. Fully Associative Mapping

3. K-way Set Associative Mapping

1. Direct Mapping-

In direct mapping,

 A particular block of main memory can map only to a particular line of the cache.

 The line number of cache to which a particular block can map is given by-

Cache line number

= (Main Memory Block Address) Modulo (Number of lines in Cache)

Example-

 Consider cache memory is divided into ‘n’ number of lines.

 Then, block ‘j’ of main memory can map to line number (j mod n) only of the cache.

Need of Replacement Algorithm-

In direct mapping,

 There is no need of any replacement algorithm.

 This is because a main memory block can map only to a particular line of the cache.

 Thus, the new incoming block will always replace the existing block (if any) in that particular line.

Division of Physical Address-

In direct mapping, the physical address is divided as-

2. Fully Associative Mapping-

In fully associative mapping,

 A block of main memory can map to any line of the cache that is freely available at that moment.

 This makes fully associative mapping more flexible than direct mapping.

Example-

Consider the following scenario-

Here,

 All the lines of cache are freely available.

 Thus, any block of main memory can map to any line of the cache.

 Had all the cache lines been occupied, then one of the existing blocks will have to be replaced.

Need of Replacement Algorithm-

In fully associative mapping,

 A replacement algorithm is required.

 Replacement algorithm suggests the block to be replaced if all the cache lines are occupied.

 Thus, replacement algorithm like FCFS Algorithm, LRU Algorithm etc is employed.

Division of Physical Address-

In fully associative mapping, the physical address is divided as-

3. K-way Set Associative Mapping-

In k-way set associative mapping,

 Cache lines are grouped into sets where each set contains k number of lines.

 A particular block of main memory can map to only one particular set of the cache.

 However, within that set, the memory block can map any cache line that is freely available.

 The set of the cache to which a particular block of the main memory can map is given by-

Cache set number

= (Main Memory Block Address) Modulo (Number of sets in Cache)

Example-

Consider the following example of 2-way set associative mapping-

Here,

 k = 2 suggests that each set contains two cache lines.

 Since cache contains 6 lines, so number of sets in the cache = 6 / 2 = 3 sets.

 Block ‘j’ of main memory can map to set number (j mod 3) only of the cache.

 Within that set, block ‘j’ can map to any cache line that is freely available at that moment.

 If all the cache lines are occupied, then one of the existing blocks will have to be replaced.

112. Difference between Contiguous and Non-contiguous Memory Allocation

Ans:

1. Contiguous Memory Allocation :

Contiguous memory allocation is basically a method in which a single contiguous section/part of

memory is allocated to a process or file needing it. Because of this all the available memory space

resides at the same place together, which means that the freely/unused available memory partitions

are not distributed in a random fashion here and there across the whole memory space.

 The main memory is a combination of two main portions- one for the operating system and

other for the user program. We can implement/achieve contiguous memory allocation by dividing the

memory partitions into fixed size partitions.

3. Non-Contiguous Memory Allocation :

Non-Contiguous memory allocation is basically a method on the contrary to contiguous allocation

method, allocates the memory space present in different locations to the process as per it’s

requirements. As all the available memory space is in a distributed pattern so the freely available

memory space is also scattered here and there.

 This technique of memory allocation helps to reduce the wastage of memory, which

eventually gives rise to Internal and external fragmentation.

Difference between Contiguous and Non-contiguous Memory Allocation :

S.NO.

CONTIGUOUS

MEMORY

ALLOCATION

NON-CONTIGUOUS

MEMORY ALLOCATION

1.

Contiguous

memory allocation

allocates

Non-Contiguous memory

allocation allocates separate

blocks of memory to a

S.NO.

CONTIGUOUS

MEMORY

ALLOCATION

NON-CONTIGUOUS

MEMORY ALLOCATION

consecutive blocks

of memory to a

file/process.

file/process.

2. Faster in Execution.
Slower in Execution.

3.

It is easier for the

OS to control.

It is difficult for the OS to

control.

4.

Overhead is

minimum as not

much address

translations are

there while

executing a process.

More Overheads are there as

there are more address

translations.

5.

Internal

fragmentation

occurs in

Contiguous

memory allocation

method.

External fragmentation occurs

in Non-Contiguous memory

allocation method.

6.

It includes single

partition allocation

and multi-partition

allocation.

It includes paging and

segmentation.

7.

Wastage of memory

is there.
No memory wastage is there.

113. What do you mean by Cache Block?

Ans: The basic unit for cache storage. May contain multiple bytes/words of data.

114. Explain various types of cache mapping.

Ans:

There are three different types of mapping used for the purpose of cache memory which are as

follows: Direct mapping, Associative mapping, and Set-Associative mapping. These are explained

below.

Direct Mapping –

The simplest technique, known as direct mapping, maps each block of main memory into only one

possible cache line. Or In Direct mapping, assigne each memory block to a specific line in the cache.

If a line is previously taken up by a memory block when a new block needs to be loaded, the old

block is trashed. An address space is split into two parts index field and a tag field. The cache is used

to store the tag field whereas the rest is stored in the main memory. Direct mapping`s performance is

directly proportional to the Hit ratio.

i = j modulo m

where

i=cache line number

j= main memory block number

 m=number of lines in the cache

For purposes of cache access, each main memory address can be viewed as consisting of three fields.

The least significant w bits identify a unique word or byte within a block of main memory. In most

contemporary machines, the address is at the byte level. The remaining s bits specify one of the

2
s
 blocks of main memory. The cache logic interprets these s bits as a tag of s-r bits (most significant

portion) and a line field of r bits. This latter field identifies one of the m=2
r
 lines of the cache.

Associative Mapping –

In this type of mapping, the associative memory is used to store content and addresses of the memory

word. Any block can go into any line of the cache. This means that the word id bits are used to

identify which word in the block is needed, but the tag becomes all of the remaining bits. This

enables the placement of any word at any place in the cache memory. It is considered to be the fastest

and the most flexible mapping form.

Set-associative Mapping –

This form of mapping is an enhanced form of direct mapping where the drawbacks of direct mapping

are removed. Set associative addresses the problem of possible thrashing in the direct mapping

method. It does this by saying that instead of having exactly one line that a block can map to in the

cache, we will group a few lines together creating a set. Then a block in memory can map to any one

of the lines of a specific set..Set-associative mapping allows that each word that is present in the

cache can have two or more words in the main memory for the same index address. Set associative

cache mapping combines the best of direct and associative cache mapping techniques.

In this case, the cache consists of a number of sets, each of which consists of a number of lines. The

relationships are

m = v * k

i= j mod v

where

i=cache set number

j=main memory block number

v=number of sets

m=number of lines in the cache number of sets

k=number of lines in each set

Application of Cache Memory –

1. Usually, the cache memory can store a reasonable number of blocks at any given time, but

this number is small compared to the total number of blocks in the main memory.

2. The correspondence between the main memory blocks and those in the cache is specified by a

mapping function.

115. What’s difference between CPU Cache and TLB?

Ans: CPU Cache is a fast memory which is used to improve latency of fetching information from

Main memory (RAM) to CPU registers. So CPU Cache sits between Main memory and CPU. And

this cache stores information temporarily so that the next access to the same information is faster. A

CPU cache which used to store executable instructions, it’s called Instruction Cache (I-Cache). A

CPU cache which is used to store data, it’s called Data Cache (D-Cache). So I-Cache and D-Cache

speeds up fetching time for instructions and data respectively. A modern processor contains both I-

Cache and D-Cache. For completeness, let us discuss about D-cache hierarchy as well. D-Cache is

typically organized in a hierarchy i.e. Level 1 data cache, Level 2 data cache etc.. It should be noted

that L1 D-Cache is faster/smaller/costlier as compared to L2 D-Cache. But the basic idea of ‘CPU

cache‘ is to speed up instruction/data fetch time from Main memory to CPU.

Translation Lookaside Buffer (i.e. TLB) is required only if Virtual Memory is used by a processor.

In short, TLB speeds up translation of virtual address to physical address by storing page-table in a

faster memory. In fact, TLB also sits between CPU and Main memory. Precisely speaking, TLB is

used by MMU when virtual address needs to be translated to physical address. By keeping this

mapping of virtual-physical addresses in a fast memory, access to page-table improves. It should be

noted that page-table (which itself is stored in RAM) keeps track of where virtual pages are stored in

the physical memory. In that sense, TLB also can be considered as a cache of the page-table.

But the scope of operation for TLB and CPU Cache is different. TLB is about ‘speeding up address

translation for Virtual memory’ so that page-table needn’t to be accessed for every address. CPU

Cache is about ‘speeding up main memory access latency’ so that RAM isn’t accessed always by

CPU. TLB operation comes at the time of address translation by MMU while CPU cache operation

comes at the time of memory access by CPU. In fact, any modern processor deploys all I-Cache, L1

& L2 D-Cache and TLB.

116. Discuss Write Through and Write Back in Cache in detail.

Ans: Cache is a technique of storing a copy of data temporarily in rapidly accessible storage memory.

Cache stores most recently used words in small memory to increase the speed in which a data is

accessed. It acts like a buffer between RAM and CPU and thus increases the speed in which data is

available to the processor.

Whenever a Processor wants to write a word, it checks to see if the address it wants to write the data

to, is present in the cache or not. If address is present in the cache i.e., Write Hit.

We can update the value in the cache and avoid a expensive main memory access.But this results

in Inconsistent Data Problem.As both cache and main memory have different data, it will cause

problem in two or more devices sharing the main memory (as in a multiprocessor system).

This is where Write Through and Write Back comes into picture.

Write Through:

https://www.geeksforgeeks.org/cache-memory-in-computer-organization/

In write through, data is simultaneously updated to cache and memory. This process is simpler

and more reliable. This is used when there are no frequent writes to the cache (Number of write

operation is less).

It helps in data recovery (In case of power outage or system failure). A data write will experience

latency (delay) as we have to write to two locations (both Memory and Cache). It Solves the

inconsistency problem. But it questions the advantage of having a cache in write operation (As the

whole point of using a cache was to avoid multiple accessing to the main memory).

Write Back:

The data is updated only in the cache and updated into the memory in later time. Data is updated in

the memory only when the cache line is ready to replaced (cache line replacement is done using

Belady’s Anomaly, Least Recently Used Algorithm, FIFO, LIFO and others depending on the

application).Write Back is also known as Write Deferred.

Dirty Bit : Each Block in the cache needs a bit to indicate if the data present in the cache was

modified(Dirty) or not modified(Clean).If it is clean there is no need to write it into the memory. It

designed to reduce write operation to a memory. If Cache fails or if System fails or power

outage the modified data will be lost. Because its nearly impossible to restore data from cache if lost.

If write occurs to a location that is not present in the Cache(Write Miss), we use two options, Write

Allocation and Write Around.

Write Allocation:

In Write Allocation data is loaded from the memory into cache and then updated. Write allocation

works with both Write back and Write through.But it is generally used with Write Back because it is

unnecessary to bring data from the memory to cache and then updating the data in both cache and

main memory. Thus Write Through is often used with No write Allocate.

Write Around:

Here data is Directly written/updated to main memory without disturbing cache.It is better to use this

when the data is not immediately used again.

117. Explain in detail Multilevel Cache Organisation .

Ans: Cache is a random access memory used by the CPU to reduce the average time taken to access

memory.

Multilevel Caches is one of the techniques to improve Cache Performance by reducing the “MISS

PENALTY”. Miss Penalty refers to the extra time required to bring the data into cache from the Main

memory whenever there is a “miss” in cache .

For clear understanding let us consider an example where CPU requires 10 Memory References for

accessing the desired information and consider this scenario in the following 3 cases of System

design :

Case 1 : System Design without Cache Memory

Here the CPU directly communicates with the main memory and no caches are involved.

In this case, the CPU needs to access the main memory 10 times to access the desired information.

Case 2 : System Design with Cache Memory

Here the CPU at first checks whether the desired data is present in the Cache Memory or not i.e.

whether there is a “hit” in cache or “miss” in cache. Suppose there are 3 miss in Cache Memory then

the Main Memory will be accessed only 3 times. We can see that here the miss penalty is reduced

because the Main Memory is accessed a lesser number of times than that in the previous case.

https://www.geeksforgeeks.org/cache-memory/

Case 3 : System Design with Multilevel Cache Memory

Here the Cache performance is optimized further by introducing multilevel Caches. As shown in the

above figure, we are considering 2 level Cache Design. Suppose there are 3 miss in the L1 Cache

Memory and out of these 3 misses there are 2 miss in the L2 Cache Memory then the Main Memory

will be accessed only 2 times. It is clear that here the Miss Penalty is reduced considerably than that

in the previous case thereby improving the Performance of Cache Memory.

NOTE :

We can observe from the above 3 cases that we are trying to decrease the number of Main Memory

References and thus decreasing the Miss Penalty in order to improve the overall System

Performance. Also, it is important to note that in the Multilevel Cache Design, L1 Cache is attached

to the CPU and it is small in size but fast. Although, L2 Cache is attached to the Primary Cache i.e.

L1 Cache and it is larger in size and slower but still faster than the Main Memory.

Effective Access Time = Hit rate * Cache access time

 + Miss rate * Lower level access time

Average access Time For Multilevel Cache:(Tavg)

Tavg = H1 * C1 + (1 – H1) * (H2 * C2 +(1 – H2) *M)

where

H1 is the Hit rate in the L1 caches.

H2 is the Hit rate in the L2 cache.

C1 is the Time to access information in the L1 caches.

C2 is the Miss penalty to transfer information from the L2 cache to an L1 cache.

M is the Miss penalty to transfer information from the main memory to the L2 cache.

Example:

Find the Average memory access time for a processor with a 2 ns clock cycle time, a miss rate of

0.04 misses per instruction, a miss penalty of 25 clock cycles, and a cache access time (including hit

detection) of 1 clock cycle. Also, assume that the read and write miss penalties are the same and

ignore other write stalls.

Solution:

Average Memory access time(AMAT)= Hit Time + Miss Rate * Miss Penalty.

Hit Time = 1 clock cycle (Hit time = Hit rate * access time) but here Hit time is

 directly given so,

Miss rate = 0.04

Miss Penalty= 25 clock cycle (this is time taken by the above level of memory after

 the hit)

so, AMAT= 1 + 0.04 * 25

 AMAT= 2 clock cycle

according to question 1 clock cycle = 2 ns

AMAT = 4ns

118. Explain Amdahl’s law.

Ans: It is named after computer scientist Gene Amdahl(a computer architect from IBM and Amdahl

corporation), and was presented at the AFIPS Spring Joint Computer Conference in 1967. It is also

known as Amdahl’s argument. It is a formula which gives the theoretical speedup in latency of the

execution of a task at a fixed workload that can be expected of a system whose resources are

improved. In other words, it is a formula used to find the maximum improvement possible by just

improving a particular part of a system. It is often used in parallel computing to predict the

theoretical speedup when using multiple processors.

Speedup-

Speedup is defined as the ratio of performance for the entire task using the enhancement and

performance for the entire task without using the enhancement or speedup can be defined as the ratio

of execution time for the entire task without using the enhancement and execution time for the entire

task using the enhancement.

If Pe is the performance for entire task using the enhancement when possible, Pw is the performance

for entire task without using the enhancement, Ew is the execution time for entire task without using

the enhancement and Ee is the execution time for entire task using the enhancement when possible

then,

Speedup = Pe/Pw

or

Speedup = Ew/Ee

Amdahl’s law uses two factors to find speedup from some enhancement –

Fraction enhanced – The fraction of the computation time in the original computer that can be

converted to take advantage of the enhancement. For example- if 10 seconds of the execution time of

a program that takes 40 seconds in total can use an enhancement , the fraction is 10/40. This obtained

value is Fraction Enhanced.

Fraction enhanced is always less than 1.

Speedup enhanced – The improvement gained by the enhanced execution mode; that is, how

much faster the task would run if the enhanced mode were used for the entire program. For example

– If the enhanced mode takes, say 3 seconds for a portion of the program, while it is 6 seconds in the

original mode, the improvement is 6/3. This value is Speedup enhanced.

Speedup Enhanced is always greater than 1.

The overall Speedup is the ratio of the execution time:-

119. Explain about different types of RAM (Random Access Memory).

Ans: RAM(Random Access Memory) is a part of computer’s Main Memory which is directly

accessible by CPU. RAM is used to Read and Write data into it which is accessed by CPU randomly.

RAM is volatile in nature, it means if the power goes off, the stored information is lost. RAM is used

to store the data that is currently processed by the CPU. Most of the programs and data that are

modifiable are stored in RAM.

Integrated RAM chips are available in two form:

1. SRAM(Static RAM)

2. DRAM(Dynamic RAM)

The block diagram of RAM chip is given below.

SRAM

The SRAM memories consist of circuits capable of retaining the stored information as long as the

power is applied. That means this type of memory requires constant power. SRAM memories are

used to build Cache Memory.

SRAM Memory Cell: Static memories(SRAM) are memories that consist of circuits capable of

retaining their state as long as power is on. Thus this type of memories is called volatile memories.

The below figure shows a cell diagram of SRAM. A latch is formed by two inverters connected as

shown in the figure. Two transistors T1 and T2 are used for connecting the latch with two bit lines.

The purpose of these transistors is to act as switches that can be opened or closed under the control of

the word line, which is controlled by the address decoder. When the word line is at 0-level, the

transistors are turned off and the latch remains its information. For example, the cell is at state 1 if

the logic value at point A is 1 and at point B is 0. This state is retained as long as the word line is not

activated.

For Read operation, the word line is activated by the address input to the address decoder. The

activated word line closes both the transistors (switches) T1 and T2. Then the bit values at points A

and B can transmit to their respective bit lines. The sense/write circuit at the end of the bit lines sends

the output to the processor.

For Write operation, the address provided to the decoder activates the word line to close both the

switches. Then the bit value that to be written into the cell is provided through the sense/write circuit

and the signals in bit lines are then stored in the cell.

DRAM

DRAM stores the binary information in the form of electric charges that applied to capacitors. The

stored information on the capacitors tend to lose over a period of time and thus the capacitors must

be periodically recharged to retain their usage. The main memory is generally made up of DRAM

chips.

DRAM Memory Cell: Though SRAM is very fast, but it is expensive because of its every cell

requires several transistors. Relatively less expensive RAM is DRAM, due to the use of one

transistor and one capacitor in each cell, as shown in the below figure., where C is the capacitor and

T is the transistor. Information is stored in a DRAM cell in the form of a charge on a capacitor and

this charge needs to be periodically recharged.

For storing information in this cell, transistor T is turned on and an appropriate voltage is applied to

the bit line. This causes a known amount of charge to be stored in the capacitor. After the transistor is

turned off, due to the property of the capacitor, it starts to discharge. Hence, the information stored in

the cell can be read correctly only if it is read before the charge on the capacitors drops below some

threshold value.

120. Explain Interrupts.

Ans: Interrupt is a signal emitted by hardware or software when a process or an event needs

immediate attention. It alerts the processor to a high priority process requiring interruption of the

current working process. In I/O devices one of the bus control lines is dedicated for this purpose and

is called the Interrupt Service Routine (ISR).

When a device raises an interrupt at lets say process i, the processor first completes the execution of

instruction i. Then it loads the Program Counter (PC) with the address of the first instruction of the

ISR. Before loading the Program Counter with the address, the address of the interrupted instruction

is moved to a temporary location. Therefore, after handling the interrupt the processor can continue

with process i+1.

While the processor is handling the interrupts, it must inform the device that its request has been

recognized so that it stops sending the interrupt request signal. Also, saving the registers so that the

interrupted process can be restored in the future, increases the delay between the time an interrupt is

received and the start of the execution of the ISR. This is called Interrupt Lattency.

Hardware Interrupts:

In a hardware interrupt, all the devices are connected to the Interrupt Request Line. A single request

line is used for all the n devices. To request an interrupt, a device closes its associated switch. When

https://www.geeksforgeeks.org/purpose-of-an-interrupt-in-computer-organization/

a device requests an interrupts, the value of INTR is the logical OR of the requests from individual

devices.

Sequence of events involved in handling an IRQ:

1. Devices raise an IRQ.

2. Processor interrupts the program currently being executed.

3. Device is informed that its request has been recognized and the device deactivates the request signal.

4. The requested action is performed.

5. Interrupt is enabled and the interrupted program is resumed.

121. Difference between Interrupts and Exceptions.

Ans: Exceptions and interrupts are unexpected events which will disrupt the normal flow of

execution of instruction(that is currently executing by processor). An exception is an unexpected

event from within the processor. Interrupt is an unexpected event from outside the process.

Whenever an exception or interrupt occurs, the hardware starts executing the code that performs an

action in response to the exception. This action may involve killing a process, outputting an error

message, communicating with an external device, or horribly crashing the entire computer system by

initiating a “Blue Screen of Death” and halting the CPU. The instructions responsible for this action

reside in the operating system kernel, and the code that performs this action is called the interrupt

handler code. Now, We can think of handler code as an operating system subroutine. Then, After the

handler code is executed, it may be possible to continue execution after the instruction where the

execution or interrupt occurred.

Exception and Interrupt Handling :

Whenever an exception or interrupt occurs, execution transition from user mode to kernel mode

where the exception or interrupt is handled. In detail, the following steps must be taken to handle an

exception or interrupts.

While entering the kernel, the context (values of all CPU registers) of the currently executing process

must first be saved to memory. The kernel is now ready to handle the exception/interrupt.

1. Determine the cause of the exception/interrupt.

2. Handle the exception/interrupt.

When the exception/interrupt have been handled the kernel performs the following steps:

1. Select a process to restore and resume.

2. Restore the context of the selected process.

3. Resume execution of the selected process.

At any point in time, the values of all the registers in the CPU defines the context of the CPU.

Another name used for CPU context is CPU state.

The exception/interrupt handler uses the same CPU as the currently executing process. When

entering the exception/interrupt handler, the values in all CPU registers to be used by the

exception/interrupt handler must be saved to memory. The saved register values can later restored

before resuming execution of the process.

The handler may have been invoked for a number of reasons. The handler thus needs to determine

the cause of the exception or interrupt. Information about what caused the exception or interrupt can

be stored in dedicated registers or at predefined addresses in memory.

Next, the exception or interrupt needs to be serviced. For instance, if it was a keyboard interrupt, then

the key code of the key press is obtained and stored somewhere or some other appropriate action is

taken. If it was an arithmetic overflow exception, an error message may be printed or the program

may be terminated.

The exception/interrupt have now been handled and the kernel. The kernel may choose to resume the

same process that was executing prior to handling the exception/interrupt or resume execution of any

other process currently in memory.

https://www.geeksforgeeks.org/interrupts/

The context of the CPU can now be restored for the chosen process by reading and restoring all

register values from memory.

The process selected to be resumed must be resumed at the same point it was stopped. The address of

this instruction was saved by the machine when the interrupt occurred, so it is simply a matter of

getting this address and make the CPU continue to execute at this address.

122. What are the different types of interrupts present in 8086 microprocessor?

Ans: An interrupt is a condition that halts the microprocessor temporarily to work on a different task

and then return to its previous task. Interrupt is an event or signal that request to attention of CPU.

This halt allows peripheral devices to access the microprocessor.

Whenever an interrupt occurs the processor completes the execution of the current instruction and

starts the execution of an Interrupt Service Routine (ISR) or Interrupt Handler. ISR is a program that

tells the processor what to do when the interrupt occurs. After the execution of ISR, control returns

back to the main routine where it was interrupted.

In 8086 microprocessor following tasks are performed when microprocessor encounters an interrupt:

1. The value of flag register is pushed into the stack. It means that first the value of SP (Stack Pointer)

is decremented by 2 then the value of flag register is pushed to the memory address of stack segment.

2. The value of starting memory address of CS (Code Segment) is pushed into the stack.

3. The value of IP (Instruction Pointer) is pushed into the stack.

4. IP is loaded from word location (Interrupt type) * 04.

5. CS is loaded from the next word location.

6. Interrupt and Trap flag are reset to 0.

The different types of interrupts present in 8086 microprocessor are given by:

1. Hardware Interrupts- Hardware interrupts are those interrupts which are caused by any peripheral

device by sending a signal through a specified pin to the microprocessor. There are two hardware

interrupts in 8086 microprocessor. They are:

 (A) NMI (Non Maskable Interrupt) – It is a single pin non maskable hardware interrupt which

cannot be disabled. It is the highest priority interrupt in 8086 microprocessor. After its

execution, this interrupt generates a TYPE 2 interrupt. IP is loaded from word location 00008

H and CS is loaded from the word location 0000A H.

 (B) INTR (Interrupt Request) – It provides a single interrupt request and is activated by I/O

port. This interrupt can be masked or delayed. It is a level triggered interrupt. It can receive

any interrupt type, so the value of IP and CS will change on the interrupt type received.

2. Software Interrupts – These are instructions that are inserted within the program to generate

interrupts. There are 256 software interrupts in 8086 microprocessor. The instructions are of the

format INT type where type ranges from 00 to FF. The starting address ranges from 00000 H to

003FF H. These are 2 byte instructions. IP is loaded from type * 04 H and CS is loaded from the next

address give by (type * 04) + 02 H. Some important software interrupts are:

 (A) TYPE 0 corresponds to division by zero(0).

 (B) TYPE 1 is used for single step execution for debugging of program.

 (C) TYPE 2 represents NMI and is used in power failure conditions.

 (D) TYPE 3 represents a break-point interrupt.

 (E) TYPE 4 is the overflow interrupt.

123. Discuss the diffirent Mode of Data Transfer.

Ans: The binary information that is received from an external device is usually stored in the memory

unit. The information that is transferred from the CPU to the external device is originated from the

memory unit. CPU merely processes the information but the source and target is always the memory

unit. Data transfer between CPU and the I/O devices may be done in different modes.

Data transfer to and from the peripherals may be done in any of the three possible ways

1. Programmed I/O.

2. Interrupt- initiated I/O.

3. Direct memory access(DMA).

Now let’s discuss each mode one by one.

1. Programmed I/O: It is due to the result of the I/O instructions that are written in the computer

program. Each data item transfer is initiated by an instruction in the program. Usually the transfer is

from a CPU register and memory. In this case it requires constant monitoring by the CPU of the

peripheral devices.

Example of Programmed I/O: In this case, the I/O device does not have direct access to the

memory unit. A transfer from I/O device to memory requires the execution of several instructions by

the CPU, including an input instruction to transfer the data from device to the CPU and store

instruction to transfer the data from CPU to memory. In programmed I/O, the CPU stays in the

program loop until the I/O unit indicates that it is ready for data transfer. This is a time consuming

process since it needlessly keeps the CPU busy. This situation can be avoided by using an interrupt

facility. This is discussed below.

2. Interrupt- initiated I/O: Since in the above case we saw the CPU is kept busy unnecessarily. This

situation can very well be avoided by using an interrupt driven method for data transfer. By using

interrupt facility and special commands to inform the interface to issue an interrupt request signal

whenever data is available from any device. In the meantime the CPU can proceed for any other

program execution. The interface meanwhile keeps monitoring the device. Whenever it is determined

that the device is ready for data transfer it initiates an interrupt request signal to the computer. Upon

detection of an external interrupt signal the CPU stops momentarily the task that it was already

performing, branches to the service program to process the I/O transfer, and then return to the task it

was originally performing.

Note: Both the methods programmed I/O and Interrupt-driven I/O require the active intervention of

the

processor to transfer data between memory and the I/O module, and any data transfer must transverse

a path through the processor. Thus both these forms of I/O suffer from two inherent drawbacks.

 The I/O transfer rate is limited by the speed with which the processor can test and service a

device.

 The processor is tied up in managing an I/O transfer; a number of instructions must be

executed

for each I/O transfer.

3. Direct Memory Access: The data transfer between a fast storage media such as magnetic disk and

memory unit is limited by the speed of the CPU. Thus we can allow the peripherals directly

communicate with each other using the memory buses, removing the intervention of the CPU. This

type of data transfer technique is known as DMA or direct memory access. During DMA the CPU is

idle and it has no control over the memory buses. The DMA controller takes over the buses to

manage the transfer directly between the I/O devices and the memory unit.

Bus Request : It is used by the DMA controller to request the CPU to relinquish the control of the

buses.

Bus Grant : It is activated by the CPU to Inform the external DMA controller that the buses are in

high impedance state and the requesting DMA can take control of the buses. Once the DMA has

taken the control of the buses it transfers the data. This transfer can take place in many ways.

124. Difference between Maskable and Non Maskable Interrupt.

Ans: An interrupt is an event caused by a component other than the CPU. It indicates the CPU of an

external event that requires immediate attention. Interrupts occur asynchronously. Maskable and non-

maskable interrupts are two types of interrupts.

1. Maskable Interrupt :

An Interrupt that can be disabled or ignored by the instructions of CPU are called as Maskable

Interrupt.The interrupts are either edge-triggered or level-triggered or level-triggered.

Eg:

RST6.5,RST7.5,RST5.5 of 8085

2. Non-Maskable Interrupt :

An interrupt that cannot be disabled or ignored by the instructions of CPU are called as Non-

Maskable Interrupt.A Non-maskable interrupt is often used when response time is critical or when an

interrupt should never be disable during normal system operation. Such uses include reporting non-

recoverable hardware errors, system debugging and profiling and handling of species cases like

system resets.

Eg:

Trap of 8085

Difference between maskable and nonmaskable interrupt :

SR.NO.

MASKABLE

INTERRUPT

NON MASKABLE

INTERRUPT

1

Maskable

interrupt is a

hardware Interrupt

that can be

A non-maskable

interrupt is a hardware

interrupt that cannot

be disabled or ignored

https://www.geeksforgeeks.org/interrupts-8085-microprocessor/

SR.NO.

MASKABLE

INTERRUPT

NON MASKABLE

INTERRUPT

disabled or

ignored by the

instructions of

CPU.

by the instructions of

CPU.

2

When maskable

interrupt occur, it

can be handled

after executing the

current

instruction.

When non-maskable

interrupts occur, the

current instructions

and status are stored in

stack for the CPU to

handle the interrupt.

3

Maskable

interrupts help to

handle lower

priority tasks.

Non-maskable

interrupt help to

handle higher priority

tasks such as

watchdog timer.

4

Maskable

interrupts used to

interface with

peripheral device.

Non maskable

interrupt used for

emergency purpose

e.g power failure,

smoke detector etc .

5

In maskable

interrupts,

response time is

high.

In non maskable

interrupts, response

time is low.

6

It may be vectored

or non-vectored.

All are vectored

interrupts.

7

Operation can be

masked or made

pending.

Operation Cannot be

masked or made

pending.

8

RST6.5, RST7.5,

and RST5.5 of

8085 are some

common examples

of maskable

Interrupts.

Trap of 8085

microprocessor is an

example for non-

maskable interrupt.

125. Difference between Interrupt and Polling.

Ans:

Interrupt:

Interrupt is a hardware mechanism in which, the device notices the CPU that it requires its attention.

Interrupt can take place at any time. So when CPU gets an interrupt signal trough the indication

interrupt-request line, CPU stops the current process and respond to the interrupt by passing the

control to interrupt handler which services device.

Polling:

In polling is not a hardware mechanism, its a protocol in which CPU steadily checks whether the

device needs attention. Wherever device tells process unit that it desires hardware processing, in

polling process unit keeps asking the I/O device whether or not it desires CPU processing. The CPU

ceaselessly check every and each device hooked up thereto for sleuthing whether or not any device

desires hardware attention.

Each device features a command-ready bit that indicates the standing of that device, i.e., whether or

not it’s some command to be dead by hardware or not. If command bit is ready one, then it’s some

command to be dead else if the bit is zero, then it’s no commands.

Let’s see that the difference between interrupt and polling:

S.NO INTERRUPT
POLLING

1.

In interrupt, the

device notices the

CPU that it requires

its attention.

Whereas, in polling,

CPU steadily checks

whether the device

needs attention.

2.

An interrupt is not a

protocol, its a

hardware

mechanism.

Whereas it isn’t a

hardware mechanism,

its a protocol.

3.

In interrupt, the

device is serviced

by interrupt

handler.

While in polling, the

device is serviced by

CPU.

4.

Interrupt can take

place at any time.

Whereas CPU steadily

ballots the device at

regular or proper

interval.

5.

In interrupt,

interrupt request

line is used as

indication for

indicating that

device requires

servicing.

While in polling,

Command ready bit is

used as indication for

indicating that device

requires servicing.

6.

In interrupts,

processor is simply

On the opposite hand,

in polling, processor

https://www.geeksforgeeks.org/io-interface-interrupt-dma-mode/

S.NO INTERRUPT
POLLING

disturbed once any

device interrupts it.

waste countless

processor cycles by

repeatedly checking the

command-ready little

bit of each device.

126. What do you mean by DMA?

Ans: Direct Memory Access: The data transfer between a fast storage media such as magnetic disk

and memory unit is limited by the speed of the CPU. Thus we can allow the peripherals directly

communicate with each other using the memory buses, removing the intervention of the CPU. This

type of data transfer technique is known as DMA or direct memory access. During DMA the CPU is

idle and it has no control over the memory buses. The DMA controller takes over the buses to

manage the transfer directly between the I/O devices and the memory unit.

Bus Request : It is used by the DMA controller to request the CPU to relinquish the control of the

buses.

Bus Grant : It is activated by the CPU to Inform the external DMA controller that the buses are in

high impedance state and the requesting DMA can take control of the buses. Once the DMA has

taken the control of the buses it transfers the data. This transfer can take place in many ways.

Types of DMA transfer using DMA controller:

Burst Transfer :

DMA returns the bus after complete data transfer. A register is used as a byte count,

being decremented for each byte transfer, and upon the byte count reaching zero, the DMAC will

release the bus. When the DMAC operates in burst mode, the CPU is halted for the duration of the

data

transfer.

Steps involved are:

1. Bus grant request time.

2. Transfer the entire block of data at transfer rate of device because the device is usually slow

than the

speed at which the data can be transferred to CPU.

3. Release the control of the bus back to CPU

So, total time taken to transfer the N bytes

= Bus grant request time + (N) * (memory transfer rate) + Bus release control time.

Where,

X µsec =data transfer time or preparation time (words/block)

Y µsec =memory cycle time or cycle time or transfer time (words/block)

% CPU idle (Blocked)=(Y/X+Y)*100

% CPU Busy=(X/X+Y)*100

Cyclic Stealing :

An alternative method in which DMA controller transfers one word at a time after which it must

return the control of the buses to the CPU. The CPU delays its operation only for one memory cycle

to allow the direct memory I/O transfer to “steal” one memory cycle.

Steps Involved are:

4. Buffer the byte into the buffer

5. Inform the CPU that the device has 1 byte to transfer (i.e. bus grant request)

6. Transfer the byte (at system bus speed)

7. Release the control of the bus back to CPU.

Before moving on transfer next byte of data, device performs step 1 again so that bus isn’t tied up

and

the transfer won’t depend upon the transfer rate of device.

So, for 1 byte of transfer of data, time taken by using cycle stealing mode (T).

= time required for bus grant + 1 bus cycle to transfer data + time required to release the bus, it will

be

N x T

In cycle stealing mode we always follow pipelining concept that when one byte is getting transferred

then Device is parallel preparing the next byte. “The fraction of CPU time to the data transfer time” if

asked then cycle stealing mode is used.

Where,

X µsec =data transfer time or preparation time

(words/block)

Y µsec =memory cycle time or cycle time or transfer

time (words/block)

% CPU idle (Blocked) =(Y/X)*100

% CPU busy=(X/Y)*100

Interleaved mode: In this technique , the DMA controller takes over the system bus when the

microprocessor is not using it.An alternate half cycle i.e. half cycle DMA + half cycle processor.

127. What do know about Input-Output Processor (IOP) or IO channel?

Ans: The DMA mode of data transfer reduces CPU’s overhead in handling I/O operations. It also

allows parallelism in CPU and I/O operations. Such parallelism is necessary to avoid wastage of

valuable CPU time while handling I/O devices whose speeds are much slower as compared to CPU.

The concept of DMA operation can be extended to relieve the CPU further from getting involved

with the execution of I/O operations. This gives rises to the development of special purpose

processor called Input-Output Processor (IOP) or IO channel.

The Input Output Processor (IOP) is just like a CPU that handles the details of I/O operations. It is

more equipped with facilities than those are available in typical DMA controller. The IOP can fetch

and execute its own instructions that are specifically designed to characterize I/O transfers. In

addition to the I/O – related tasks, it can perform other processing tasks like arithmetic, logic,

branching and code translation. The main memory unit takes the pivotal role. It communicates with

processor by the means of DMA.

The block diagram –

The Input Output Processor is a specialized processor which loads and stores data into memory along

with the execution of I/O instructions. It acts as an interface between system and devices. It involves

a sequence of events to executing I/O operations and then store the results into the memory.

Advantages –

 The I/O devices can directly access the main memory without the intervention by the processor in

I/O processor based systems.

 It is used to address the problems that are arises in Direct memory access method.

Objective

128. A computer has a 256 KByte, 4-way set associative, write back data cache with the block size of

32 Bytes. The processor sends 32-bit addresses to the cache controller. Each cache tag directory entry

contains, in addition, to address tag, 2 valid bits, 1 modified bit and 1 replacement bit. The number of

bits in the tag field of an address is

 a) 11 b) 14 c)16 d) 27

Answer: (C)

129. Any electronic holding place where data can be stored and retrieved later whenever required is

 a) memory

 b) drive

 c) disk

 d) circuit

Answer: a)

130. Which of the following is the fastest means of memory access for CPU?

 a) Registers

 b) Cache

 c) Main memory

 d) Virtual Memory

 Answer: a)

131. The memory implemented using the semiconductor chips is _________

 a) Cache

 b) Main

 c) Secondary

 d) Registers

 Answer: b)

132. Which of the following is independent of the address bus?

 a) Secondary memory

 b) Main memory

 c) On board memory

 d) Cache memory

133. What is the location of the internal registers of CPU?

 a) Internal

 b) On-chip

 c) External

 d) Motherboard

 Answer: b)

134. MAR stands for ___________

 a) Memory address register

 b) Main address register

 c) Main accessible register

 d) Memory accessible register

Answer: a)

135. If M denotes the number of memory locations and N denotes the word size, then an expression

that denotes the storage capacity is ______________

 a) M*N

 b) M+N

 c) 2M+N

 d) 2M-N

Answer: a)

136. Size of the ________ memory mainly depends on the size of the address bus.

 a) Cache

 b) Main

 c) Secondary

 d) Virtual

Answer: b)

137. Cache memory is the on board storage.

 a) True

 b) False

 c) None

 d) Both a and b

Answer: a)

