DARBHANGA COLLEGE OF ENGINEERING DARBHANGA

Course File INSTRUMENTATION AND CONTROL (SEM-IV:ME)

Course Code- PCC-ME 207

Faculty Name:

Mr. Akhil Mohammed K K

Assistant Professor

ELECTRICAL & ELECTRONICS ENGINEERING

CONTENTS

- 1. Cover Page & Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives & course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Course Syllabus and GATE Syllabus
- 8. Time table
- 9. Course Handout
- 10. Lecture Plan
- 11. Assignment sheets
- 12. Sessional Question Papers
- 13. Previous year Question Papers
- 14. Question Bank
- 15. Power Point Presentations.

Vision of the Institute

To produce young, dynamic, motivated and globally competent Engineering graduates with an aptitude for leadership and research, to face the challenges of modernization and globalization, who will be instrumental in societal development.

Mission of the Institute

- 1. To impart quality technical education, according to the need of the society.
- 2. To help the graduates to implement their acquired Engineering knowledge for society & community development.
- 3. To strengthen nation building through producing dedicated, disciplined, intellectual & motivated engineering graduates.
- 4. To expose our graduates to industries, campus connect programs & Department of the enhance their career opportunities.
- 5. To encourage critical thinking and creativity through various academic programs. Vision of the Department

To produce comprehensively trained, socially responsible, innovative electrical & Description amp; electronics engineers and researchers of the highest quality to contribute to the nation's imprint on the world stage.

Mission of the Department

Vision of EEE: - To bring forth engineers with an emphasis on higher studies and a fervour to serve national and multinational organisations and, the society.

Mission of EEE: -

- M1: To provide domain knowledge with advanced pedagogical tools and applications.
- M2: To acquaint graduates to the latest technology and research through collaboration with industry and research institutes.
- M3: To instil skills related to professional growth and development.
- M4: To inculcate ethical valued in graduates through various social-cultural activities.

PEO of EEE

- **PEO 01** The graduate will be able to apply the Electrical and Electrical Engineering concepts to excel in higher education and research and development.
- **PEO 02** The graduate will be able to demonstrate the knowledge and skills to solve real life engineering problems and design electrical systems that are technically sound, economical and socially acceptable.
- **PEO 03** The graduates will be able to showcase professional skills encapsulating team spirit, societal and ethical values.

PSO of EEE

- **PSO 01** Students will be able to identify, formulate and solve problems using various software and other tools in the areas of Automation, Control Systems, Power Engineering and PCB designing.
- **PSO 02** Students will be able to provide sustainable solutions to growing energy demands.

Program Educational Objectives

PEO 1. Graduates will excel in professional careers and/or higher education by acquiring knowledge in Mathematics, Science, Engineering principles and Computational skills.

PEO 2. Graduates will analyse real life problems, design Electrical systems appropriate to the requirement that are technically sound, economically feasible and socially acceptable.

PEO 3. Graduates will exhibit professionalism, ethical attitude, communication skills, team work in their profession, adapt to current trends by engaging in lifelong learning and participate in Research & Development.

Program Outcomes of B.Tech in Electrical and Electronics Engineering

- 1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2.Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4.Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering
- activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7.Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9.Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12.Life-long learning: Recognize the need and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Description

This course is design to impart the basic and theoretical concept in the field of Instrumentation and control for various process control applications. Objectives: 1. To provide a basic knowledge about measurement systems and their components 2. To learn about various sensors used for measurement of mechanical quantities 3. To learn about system stability and control 4. To integrate the measurement systems with the process for process monitoring and control

Course Objectives

Objectives: 1. To provide a basic knowledge about measurement systems and their components 2. To learn about various sensors used for measurement of mechanical quantities 3. To learn about system stability and control 4. To integrate the measurement systems with the process for process monitoring and control

Course Outcomes

CO1: Identify basic functional elements of any measurement system and Classify measurement system based on various factors

CO2: Analyze sensors used in measurement system using mathematical tools

CO3: Apply sensors and measurement systems in setting up of control systems for various processes

CO4: Design various control techniques to integrate the measurement systems with the process for process monitoring and control

CO-PO MAPPING

Sr. No.	Course Outcome	PO
1.	CO1: Identify basic functional elements of any measurement system and Classify measurement system based on various factors	PO1, PO4
2.	CO2: Analyze sensors used in measurement system using mathematical tools	PO1, PO6, PO10
3.	CO3: Apply sensors and measurement systems in setting up of control systems for various processes	PO2, PO6, PO8
4.	CO4: Design various control techniques to integrate the measurement systems with the process for process monitoring and control	PO2, PO4, PO11

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1: Identify basic functional elements of any measurement system and Classify measurement system based on various	٧			٧								
factors CO2: Analyze sensors used in measurement system using mathematical tools	٧					٧				٧		
CO3: Apply sensors and measurement systems in setting up of control systems for various processes		٧				٧		٧				
CO4: Design various control techniques to integrate the measurement systems with the process for process monitoring and control		٧		٧							٧	

Syllabus

Instrumentation and Control

Course Code- PCC-ME 207

1. Objectives:

- 1. To provide a basic knowledge about measurement systems and their components
- 2. To learn about various sensors used for measurement of mechanical quantities
- 3. To learn about system stability and control
- To integrate the measurement systems with the process for process monitoring andcontrol

Module: 1 (10 lectures)

Measurement systems and performance -configuration of a measuring system,
Methods for correction for interfering and modifying inputs— accuracy, range,
resolution, error sources, precision, error sensitivity etc. Classification of errors and
statistical analysis of experimental data.

Module: 2 (8 lectures)

Instrumentation system elements -sensors for common engineering measurements. Transducers based on variable resistance, variable induction, variable capacitance and piezo-electric effects, Displacement transducer.

Module: 3 (6 lectures) Signal processing and conditioning; correction elements-actuators: pneumatic, hydraulic, electric.

Module:4 (10 lectures)

Control systems – basic elements, open/closed loop, design of block diagram; control method – P, PI, PID, when to choose what, tuning of controllers.

Module:5 (6 lectures)

System models, transfer function and system response, frequency response; Nyquist diagrams and their use.

Practical group based project utilizing above concepts.

Text Books:

- 1. Instrumentation and control systems by W. Bolton, 2nd edition, Newnes, 2000
- 2. Thomas G. Beckwith, Roy D. Marangoni, John H. Lienhard V, Mechanical Measurements (6th Edition) 6th Edition, Pearson Education India, 2007
- 3. Gregory K. McMillan, Process/Industrial Instruments and Controls Handbook, Fifth Edition, McGraw-Hill: New York,1999

Institute / College Name :	Darbhanga College of Engineering				
Program Name	BTECH Mechanical				
Course Code	PCC-ME 207				
Course Name	INSTRUMENTATION AND CONTROL				
Lecture / Tutorial (per week):	3/1 Course Credits 4				
Course Coordinator Name	AKHIL MOHAMMED K K				

1. Scope and Objectives of the Course

This course is design to impart the basic and theoretical concept in the field of Instrumentation and control for various process control applications. Objectives: 1. To provide a basic knowledge about measurement systems and their components 2. To learn about various sensors used for measurement of mechanical quantities 3. To learn about system stability and control 4. To integrate the measurement systems with the process for process monitoring and control

Text Books:

- 1. Instrumentation and control systems by W. Bolton, 2nd edition, Newnes, 2000
- 2. Thomas G. Beckwith, Roy D. Marangoni, John H. Lienhard V, Mechanical Measurements (6th Edition) 6th Edition, Pearson Education India, 2007
- 3. Gregory K. McMillan, Process/Industrial Instruments and Controls Handbook, Fifth Edition, McGraw-Hill: New York,1999

Other readings and relevant websites

S.	No.	Link of Journals, Magazines, websites and Research Papers
	1.	http://nptel.ac.in/courses/112106138/

2. Course Plan

Lecture	Date of	Topics	Web Links for video	Text Book / Reference	Page
Number	Lecture		lectures	Book / Other reading	numbers of

			material	Text Book(s)
1-3	Introduction	http://nptel.ac.in/cour ses/112106138/	TB1,	1-11
	Functional elements of a basic			
	measuring system,			
	Tutorial -	- 1, Assignment I		
4-6	Configuration of a measuring	http://nptel.ac.in/cour	TB1,	11-20
	system	ses/112106138/	,	
	Methods for correction for interfering and modifying inputs			
		- 2, Assignment II		
7-9	Static characteristics -	http://nptel.ac.in/cour ses/112106138/	TB1,	46-69
	Accuracy, precision Error sensitivity, Dynamic characteristics terms,			
	Tu	utorial - 3		
10.12	Concents of machanical	I // /	T-04	70.440
10-12	Concepts of mechanical loading and time	http://nptel.ac.in/cour ses/112106138/	TB1,	70-140
	response			
	Order of the systems,			
	Response of zero, First and			
	second order systems to			
	step, ramp and sinusoidal			
	inputs, transfer function			

	method			
<u> </u>	Tutorial	– 4, Assignment 2		·
13-16	Classification of errors	http://pptol.ac.in/cour	TB1,	141-202
13-10	Classification of errors	http://nptel.ac.in/cour	161,	141-202
		ses/112106138/		
	Statistical analysis of			
	experimental data			
		Tutorial - 5		I
17-20	Description of various		TB1,	141-202
	types of transduction			
	principles,			
	transducers based on			
	variable resistance,			
	,			
		Tutorial 6		
21-23	variable induction		TB1,	
			132,	
	transducer,			
	Variable capacitance			
	transducer			
		Tutorial - 7		
24-26	Piezo-electric effects		TB1,	
			,	
	Displacement transducer			
		Tutorial - 8		
		i utoriai - o		
27-29	Signal processing and		TB1,	
	conditioning; correction			
	elements-			
	Cicinonia			
		1	J	

30-32	actuators: pneumatic,		
	hydraulic, electric.		
	Module:4 (10		
	lectures)		
	Tutorial -9		
33-34	Control systems – basic	TB1,	
	elements, open/closed		
	loop, design of block		
	diagram.		
	control method – P, PI, PID,		
	when to choose what,		
	tuning of controllers		
	Tutorial -10		
35-36	System models, transfer	TB1	
	function and system		
	response, frequency		
	response		
	Nyquist diagrams and their		
	use.		
	Tutorial – 8, Assignme	ent 3	

1. **Evaluation Scheme:**

	Total	100
Component 3**	End Term Examination**	70
Component 2	Assignment, Class tests, Attendance	10
Component 1	Mid Semester Exam	20

^{**} The End Term Comprehensive examination will be held at the end of semester. The mandatory requirement of 75% attendance in all theory classes is to be met for being eligible to appear in this component.

SYLLABUS

Topics	No of lectures	Weightage
Module: 1 (10 lectures)		
Measurement systems and performance -configuration of a measuring	10	30%
system, Methods for correction for interfering and modifying inputs-		
accuracy, range, resolution, error sources, precision, error sensitivity		
etc.Classification of errors and statistical analysis of experimental data.		
Module: 2 (8 lectures)		
Instrumentation system elements -sensors for common engineering measurements. Transducers based on variable resistance, variable induction, variable capacitance and piezo-electric effects, Displacement transducer.	8	24%
		1.00/
Module: 3 (6 lectures) Signal processing and conditioning; correction elements- actuators: pneumatic, hydraulic, electric.	6	16%
Module:4 (10 lectures)		
Control systems – basic elements, open/closed loop, design of block diagram; control method – P, PI, PID, when to choose what, tuning of controllers.	10	30%

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Akhil Mohammed k k	
H.O.D	Mr.Prabhat Kumar	
Principal	Dr. Achintya	
Date		

Evaluation and Examination Blue Print:

Internal assessment is done through quiz tests, presentations, assignments and project work. Two sets of question papers are asked from each faculty and out of these two, without the knowledge of faculty, one question paper is chosen for the concerned examination. Examination rules and regulations are uploaded on

the student's portal. Evaluation is a very transparent process and the answer sheets of sessional tests, internal assessment assignments are returned back to the students.

The components of evaluations along with their weightage followed by the University is given below

Sessional Test 1 15%

Sessional Test 2 15%

Sessional Test 3 15%

Assignments/Quiz Tests/Seminars 10%

End term examination 70%

(From amongst the three sessional tests best of two are considered)

DARBHANGA COLLEGE OF ENGINEERING, DARBHANGA ME DEPARTMENT, FOURTH SEMESTER

INSTRUMENTATION AND CONTROL

ASSIGNMENT QUESTIONS

- 1. If a system has a gain of 5, what will be the output for an input voltage of 2 V?
 - 2.An open-loop system consists of three elements in series, the elements having gains of 2, 5 and 10. What is the overall gain of the system?
 - 3.A closed-loop control system has a forward loop with a gain of 6 and a feedback loop with a gain of 2. What will be the overall steady-state gain of the system if the feedback is (a) positive, (b) negative?
 - 4.Determine the delay time and the rise time for the following firstorder systems: (a) G(s) = 1/(4s + 1)
 - 5. Determine the natural angular frequency, the damping factor, the rise time, percentage overshoot and 2% settling time for a system where the output y is related to the input x by the differential equation:

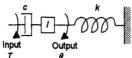
$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 5\frac{\mathrm{d}y}{\mathrm{d}t} + 16y = 16x$$

ASSIGNMENT 2

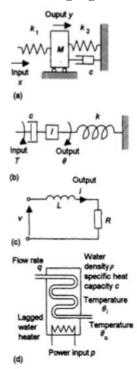
6.State if the following systems are stable, the relationship between input X and output y being described by the differential equations

(a)
$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = x$$
, (b) $\frac{d^2y}{dt^2} + \frac{dy}{dt} - 6y = x$

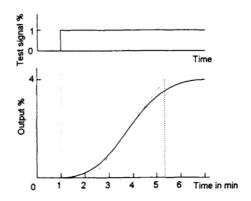
- 7.Describe frequency response of a system. Determine the magnitude and the phase of the response of a system with transfer function 3/(s+2) to sinusoidal inputs of angular frequency (a) 1 rad/s, (b) 2 rad/s
- 8..What are the frequency response functions for systems with transfer functions (a) $\frac{1}{(s + 5)}$, (b) $\frac{1}{(s + 2)}$, (c) $\frac{1}{[(s + 10)(s + 2)]}$?
- 9. What are Bode plots? Determine the asymptote Bode plot for the system having the transfer function:


$$G(s) = \frac{50(s+2)}{s(s+10)}$$

10.Explain Nyquist plot.How it can be used to determine stability of a system.Determine the gain margin and the phase margin for a system having an open-loop transfer function of


$$\frac{K}{s(s+1)(s+2)}$$

when K = 4.


- 11.A closed-loop negative feedback system for the control of the height of liquid in a tank by pumping liquid from a reservoir tank can be considered to be a system with a differential amplifier having a transfer function of 5, its output operating a pump with a transfer function 5/(s+1). The coupled system of tanks has a transfer function, relating height in the tank to the output from the pump, of 3/(s+1)(s+2). The feedback sensor of the height level in the tank has a transfer function of 0.1. Determine the overall transfer function of the system, relating the input voltage signal to the system to the height of liquid in the tank.
- 12.For a rotational system, the output theta is related to the input T.For the system to be critically damped, what is the realtion between c_rI and k

14.Derive a differential equation relating the input and output for each of the systems shown in the following figures.

15. Write down the steps involved in the Ziegler-Nichols method for tuning PID controllers. Figure below shows the open-loop response of a system to a unit step in controller output. Using the Ziegler-Nichols data, determine the optimum settings of the PID controller to be used in the system to give good performance.

QUESTION BANK

16. Figure below shows a control system designed to control the level of water in the container to a constant level. It uses a proportional controller with Kp equal to 10. The valve gives a flow rate of 10 m^3/hr per percent of controller output, its flow rate being proportional to the controller input. If the controller output is initially set to 50% what will be the outflow from the container? If the outflow increases to 600 m^3/h, what will be the new controller output to maintain the water level constant?

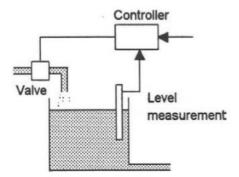


Fig.Proportional controller for water level control

- 17. A temperature control system has a set point of 20°C and the measured value is 18°C. What is (a) the absolute deviation, (b) the percentage deviation?
- 18. What is the controller gain of a temperature controller with a 80% PB if its input range is 40°C to 90° and its output is 4 mA to 20 mA?
- 19. Using the Ziegler-Nichols ultimate cycle method for the determination of the optimum settings of a PID controller, oscillations began with a gain of 2.2 with a period of 12 min. What would be the optimum settings for the PID controller?
- 20. Sketch graphs showing how the controller output will vary with time for

the error signal shown in Figure 5.34 when the controller is set initially at 50% and operates as (a) just proportional with a Kp = 5, (b) proportional plus derivative with Kp = 5 and Kd = 1.0 s, (c) proportional plus integral with Kp = 5 and Ki = 0.5/s.

- 21. The cross-sectional area A of 3, wire is to be determined from a measurement of the diameter d, being given by $A = \frac{1}{4}\pi d^2$ The diameter is measured as 2.5 ± 0.1 mm. What will be the error in the area?
- 22. List and explain the functional elements of a measurement system
- 2. If a system has a gain of 5, what will be the output for an input voltage of 2 V?
 - 2.An open-loop system consists of three elements in series, the elements having gains of 2, 5 and 10. What is the overall gain of the system?
 - 3.A closed-loop control system has a forward loop with a gain of 6 and a feedback loop with a gain of 2. What will be the overall steady-state gain of the system if the feedback is (a) positive, (b) negative?
 - 4. Determine the delay time and the rise time for the following firstorder systems: (a) G(s) = 1/(4s + 1)
 - 5. Determine the natural angular frequency, the damping factor, the rise time, percentage overshoot and 2% settling time for a system where the output y is related to the input x by the differential equation:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 5\frac{\mathrm{d}y}{\mathrm{d}t} + 16y = 16x$$

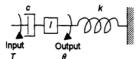
6.State if the following systems are stable, the relationship between input X and output y being described by the differential equations

(a)
$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = x$$
, (b) $\frac{d^2y}{dt^2} + \frac{dy}{dt} - 6y = x$

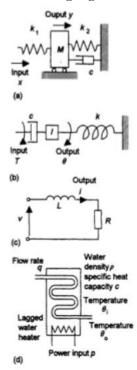
- 7.Describe frequency response of a system. Determine the magnitude and the phase of the response of a system with transfer function 3/(s + 2) to sinusoidal inputs of angular frequency (a) 1 rad/s, (b) 2 rad/s
- 8..What are the frequency response functions for systems with transfer functions (a) 1/(s + 5), (b) 1/(s + 2), (c) 1/[(s + 10)(s + 2)]?
- 9. What are Bode plots? Determine the asymptote Bode plot for the system having the transfer function:

$$G(s) = \frac{50(s+2)}{s(s+10)}$$

10.Explain Nyquist plot.How it can be used to determine stability of a system.Determine the gain margin and the phase margin for a system having an open-loop transfer function of


$$\frac{K}{s(s+1)(s+2)}$$

when K = 4.


11.A closed-loop negative feedback system for the control of the height of

liquid in a tank by pumping liquid from a reservoir tank can be considered to be a system with a differential amplifier having a transfer function of 5, its output operating a pump with a transfer function 5/(s + 1). The coupled system of tanks has a transfer function, relating height in the tank to the output from the pump, of 3/(s + 1)(s + 2). The feedback sensor of the height level in the tank has a transfer function of 0.1. Determine the overall transfer function of the system, relating the input voltage signal to the system to the height of liquid in the tank.

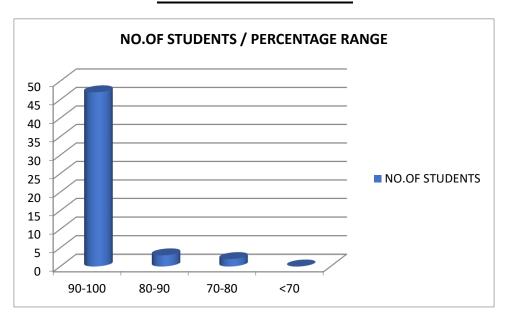
12. For a rotational system, the output theta is related to the input T. For the system to be critically damped, what is the realtion between c_rI and k

14.Derive a differential equation relating the input and output for each of the systems shown in the following figures.

15. Write down the steps involved in the Ziegler-Nichols method for tuning PID controllers. Figure below shows the open-loop response of a system to a unit step in controller output. Using the Ziegler-Nichols data, determine the optimum settings of the PID controller to be used in the system to give good performance.

LIST OF STUDENTS

3rd Semester (2018-22)


S.No.	Name of Student	Roll No.	Registration No.	
1	Prabhat Kumar	18-M-64	18102111001	
2	Aditya Kumar	18-M-67	18102111002	
3	Shubham Kumar	18-M-11	18102111003	
4	Niraj Kumar Gupta	18-M-72	18102111004	
5	Ankush Kumar	18-M-55	18102111005	
6	Priya Jha	18-M-04	18102111006	
7	Ravindra Kumar Pandit	18-M-53	18102111007	
8	Khushbu Kumari	18-M-63	18102111008	
9	Chitranjan Kumar	18-M-74	18102111010	
10	Amrit Jeevan	18-M-47	18102111011	
11	Indrajeet Gupta	18-M-73	18102111012	
12	Amrit Raj	18-M-59	18102111013	
13	Vinay Kumar	18-M-61	18102111014	
14	Anand Kumar	18-M-22	18102111015	
15	Ashok Kumar Mandal	18-M-65	18102111016	
16	Nageshwar Kumar	18-M-56	18102111018	
17	Swetank Raj	18-M-39	18102111019	
18	Vivek Kumar	18-M-12	18102111020	
19	Kumar Gaurav Gawaskar	18-M-69	18102111021	
20	Sachin Kumar	18-M-16	18102111022	
21	Amit Kumar	18-M-15	18102111023	
22	Bhaskar Jha	18-M-09	18102111025	
23	Satya Kumar	18-M-51	18102111026	
24	Ashish Ranjan	18-M-50	18102111028	
25	Avkash Kumar	18-M-57	18102111029	
26	Shilpi Kumari	18-M-52	18102111032	
27	Prabhash Kr. Abhishek	18-M-42	18102111033	
28	Prashant Kumar	18-M-45	18102111035	
29	Aditya Kumar	18-M-46	18102111036	
30	Avinash Kumar	18-M-24	18102111037	
31	Aakash Deep	18-M-03	18102111038	
32	Jitendra Das	18-M-60	18102111039	
33	Sonu Sharma	18-M-35	18102111040	
34	Rahul Kumar Sinha	18-M-49	18102111041	

35	Shivam Singh	18-M-41	18102111042
36	Md. Tahsirul Ekram	18-M-26	18102111044
37	Shabbir Raza	18-M-62	18102111046
38	Gopal Kumar Prasad	18-M-66	18102111047
39	Amresh Kumar Sahu	18-M-71	18102111048
40	Vivek Kumar Ranjan	18-M-58	18102111049
41	Niraj Kumar	19LEM03	19102111901
42	Ranjan Kumar Mishra	19LEM05	19102111902
43	Md Zakir	19LEM08	19102111903
44	Abhishek Kumar	19LEM10	19102111904
45	Vivek Kumar	19LEM07	19102111905
46	Siddharth Kumar	19LEM02	19102111906
47	Ankit Kumar	19LEM04	19102111907
48	Adarsh Kumar	19LEM01	19102111908
49	Manish Kumar Jha	19LEM11	19102111909
50	Rajeev Ranjan	19LEM09	19102111910
51	Samir Kumar	19LEM06	19102111911

Darbhanga College of Engineering, Darbhanga B.Tech - 4th Semester (2018-22), Mechanical Engineering Dept. Subject (Theory):-INSTRUMENTATION AND CONTROL

Subject (Theory):-INSTRUMENTATION AND CONTROL											
S.No.	Name of Student	Roll No.	Registration No.	5 Attendance	5 Assignment	20 Online_Exam	TOTAL				
1	Prabhat Kumar	18-M-64	18102111001	5	0	20	25				
2	Aditya Kumar	18-M-67	18102111002	5	5	19	29				
3	Shubham Kumar	18-M-11	18102111003	5	5	17	27				
4	Niraj Kumar Gupta	18-M-72	18102111004	5	5	19	29				
5	Ankush Kumar	18-M-55	18102111005	5	5	19	29				
6	Priya Jha	18-M-04	18102111006	5	4	20	29				
7	Ravindra Kumar Pandit	18-M-53	18102111007	5	0	17	22				
8	Khushbu Kumari	18-M-63	18102111008	5	5	19	29				
9	Chitranjan Kumar	18-M-74	18102111010	5	5	18	28				
10	Amrit Jeevan	18-M-47	18102111011	5	5	18	28				
11	Indrajeet Gupta	18-M-73	18102111012	5	5	18	28				
12	Amrit Raj	18-M-59	18102111013	5	5	17	27				
13	Vinay Kumar	18-M-61	18102111014	5	5	17	27				
14	Anand Kumar	18-M-22	18102111015	5	5	18	28				
15	Ashok Kumar Mandal	18-M-65	18102111015	5	5	18	28				
16	Nageshwar Kumar	18-M-56	18102111018	5	5	18	28				
17	<u> </u>			5		18	28				
	Swetank Raj	18-M-39	18102111019			14					
18	Vivek Kumar	18-M-12	18102111020	5	5		24				
19	Kumar Gaurav Gawaskar	18-M-69	18102111021	5		16	21				
20	Sachin Kumar	18-M-16	18102111022	5		17	27				
21	Amit Kumar	18-M-15	18102111023	5	5	18	28				
22	Bhaskar Jha	18-M-09	18102111025	5	5	17	27				
23	Satya Kumar	18-M-51	18102111026	5		19	29				
24	Ashish Ranjan	18-M-50	18102111028	5	5	19	29				
25	Avkash Kumar	18-M-57	18102111029	5	5	19	29				
26	Shilpi Kumari	18-M-52	18102111032	5	5	19	29				
27	Prabhash Kr. Abhishek	18-M-42	18102111033	5	5	18	28				
28	Prashant Kumar	18-M-45	18102111035	5	5	18	28				
29	Aditya Kumar	18-M-46	18102111036	5	5	18	28				
30	Avinash Kumar	18-M-24	18102111037	5	5	19	29				
31	Aakash Deep	18-M-03	18102111038	5	5	19	29				
32	Jitendra Das	18-M-60	18102111039	5	5	17	27				
33	Sonu Sharma	18-M-35	18102111040	5	5	19	29				
34	Rahul Kumar Sinha	18-M-49	18102111041	5	5	17	27				
35	Shivam Singh	18-M-41	18102111042	5	5	19	29				
36	Md. Tahsirul Ekram	18-M-26	18102111044	5	4	20	29				
37	Shabbir Raza	18-M-62	18102111046	5	5	18	28				
38	Gopal Kumar Prasad	18-M-66	18102111047	5	5	17	27				
39	Amresh Kumar Sahu	18-M-71	18102111048	5		19	29				
40	Vivek Kumar Ranjan	18-M-58	18102111049	5	5	18	28				
41	Niraj Kumar	19LEM03	19102111901	5		18	28				
42	Ranjan Kumar Mishra	19LEM05	19102111902	5		19	29				
43	Md Zakir	19LEM08	19102111903	5		17	27				
44	Abhishek Kumar	19LEM10	19102111904	5		20	29				
45	Vivek Kumar	19LEM07	19102111905	5		18	28				
46	Siddharth Kumar	19LEM02	19102111906	5		17	27				
47	Ankit Kumar	19LEM04	19102111907	5		20	25				
48	Adarsh Kumar	19LEM01	19102111907	5		18	28				
49	Manish Kumar Jha	19LEM11	19102111909	5		18	28				
50	Rajeev Ranjan	19LEM11	19102111909	5		20	29				
51	Samir Kumar	19LEM06	19102111910	5		18	28				
<i>J</i> 1	Samu Kamar	17LEIVIOO	17102111711	Э	J	10	20				

RESULT ANALYSIS

