Darbhanga College of Engineering

Darbhanga

Course File

Of

Analog and Digital Communication System

(PCC-EEE19)

Prepared by Dr. Ravi Ranjan Assistant Prof. EEE Department, DCE Darbhanga

CONTENTS

- 1. Cover Page& Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives &course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Course Syllabus
- 8. Time table
- 9. Student list
- 10.Course Handout
- 11.Lecture Plan
- 12.Assignment sheets
- 13.Tutorial Sheets
- 14.Sessional Question Papers
- 15.Old End Semester Exam (Final Exam) Question Papers
- 16.Question Bank
- 17.Lecture Notes
- 18.Reference Materials
- 19.Results
- 20.Result Analysis

Vision of the Institute

To produce young, dynamic, motivated and globally competent Engineering graduates with an aptitude for leadership and research, to face the challenges of modernization and globalization, who will be instrumental in societal development.

Mission of the Institute

- 1. To impart quality technical education, according to the need of the society.
- 2. To help the graduates to implement their acquired Engineering knowledge for society $\&$ community development.
- 3. To strengthen nation building through producing dedicated, disciplined, intellectual & motivated engineering graduates.
- 4. To expose our graduates to industries, campus connect programs & research institutions to enhance their career opportunities.
- 5. To encourage critical thinking and creativity through various academic programs.

Vision of EEE Department

To bring forth engineers with an emphasis on higher studies and a fervour to serve national and multinational organisations and, the society.

Mission of EEE Department

M1: - To provide domain knowledge with advanced pedagogical tools and applications.

M2: - To acquaint graduates to the latest technology and research through collaboration with industry and research institutes.

M3: - To instil skills related to professional growth and development.

M4: - To inculcate ethical valued in graduates through various social-cultural activities.

PEO of EEE

PEO 01 – The graduate will be able to apply the Electrical and Electrical Engineering concepts to excel in higher education and research and development.

PEO 02 – The graduate will be able to demonstrate the knowledge and skills to solve real life engineering problems and design electrical systems that are technically sound, economical and socially acceptable.

PEO 03 – The graduates will be able to showcase professional skills encapsulating team spirit, societal and ethical values.

Program Educational Objectives:-

PEO 1. Graduates will excel in professional careers and/or higher education by acquiring knowledge in Mathematics, Science, Engineering principles and Computational skills.

PEO 2. Graduates will analyze real life problems, design Electrical systems appropriate to the requirement that are technically sound, economically feasible and socially acceptable.

PEO 3. Graduates will exhibit professionalism, ethical attitude, communication skills, team work in their profession, adapt to current trends by engaging in lifelong learning and participate in Research & Development.

Program Outcomes of B.Tech in Electrical and Electronics Engineering

1.Engineering knowledge: Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.

2.Problem analysis: Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.Design/development of solutions: Design solutions for complex engineering problems anddesign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.Conduct investigations of complex problems: Use research-based knowledge and researchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6.The engineer and society: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering solutionsin societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms ofthe engineering practice.

9.Individual and team work: Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.

10.Communication: Communicate effectively on complex engineering activities with the engineeringcommunity and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of theengineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12.Life-long learning: Recognize the need and have the preparation and ability to engage in independent and life-long learning in the broadestcontext of technological change.

PSO 1. An ability to identify, formulate and solve problems in the areas of Electrical and Electronics Engineering.

PSO 2. An ability to use the techniques, skills and modern engineering tools necessary for innovation.

Scope and Objectives of the Course

Communication is the basic process of exchanging information. "Analog and Digital Communication System", is the subject which deals with the techniques employed in communication for analog and digital data. The subject basically deals with the different aspects of a signal and spectra. It also deals with the modulation of signals and systems and different mathematical aspects related to signals. It gives a more analytical look into the basic entities such as those of signals, modulation, noise etc. which form the base for higher studies in telecommunication.

Course Objectives:

After the completion of this course the students will be able to:

 CO1: Apply different mathematical concepts like Fourier series and Fourier transform and different circuit design concept to understand different modulation and demodulation techniques.

CO2: Compare the performance of different modulation techniques.

CO3: Understand working and operation of Digital communication principle.

CO4: Able to compute and analyse error correction codes.

CO5: Able to understand modern communication system.

Course Outcomes:

On completion of this course, the students will be able to

- 1. Understand different modulation and demodulation techniques analog and digital communication.
- 2. Apply signal and system analysis tools in the time and frequency domains, including Impulse response, convolution, frequency response, Fourier series, Fourier transform, and Hilbert transform.
- 3. Develop the ability to compare and contrast the strengths and weaknesses of various communication systems.
- 4. Able to understand error control coding techniques.
- 5. Prepare and deliver an oral presentation about a topic of current interest in the field of communications.

Mapping of CO's with PO's

Syllabus

Subject Code: PCC-EEE19

Subject Name: Analog & Digital Communication System

Module 1: Basic blocks of Communication System. Analog Modulation - Principles of Amplitude Modulation, DSBSC, SSB-SC and VSB-SC. AM transmitters and receivers.

Module 2: Angle Modulation - Frequency and Phase Modulation. Transmission Bandwidth of FM signals, Methods of generation and detection. FM Transmitters and Receivers.

Module 3: Sampling theorem - Pulse Modulation Techniques - PAM, PWM and PPM concepts - PCM system – Data transmission using analog carriers (ASK, FSK, BPSK, QPSK).

Module 4: Error control coding techniques – Linear block codes- Encoder and decoder. Cyclic codes – Encoder, Syndrome Calculator. Convolution codes.

Module 5: Modern Communication Systems – Microwave communication systems - Optical communication system - Satellite communication system - Mobile communication system.

Text / References:

1. Simon Haykins, 'Communication Systems', John Wiley, 3rd Edition, 1995.

2. D.Roddy & J.Coolen, 'Electronic Communications', Prentice Hall of India, 4th Edition, 1999.

3. Kennedy G, 'Electronic Communication System', McGraw Hill, 1987.

DARBHANGA COLLEGE OF ENGINEERING, DARBHANGA

Electrical and Electronics Engineering Semester – 5th, Session (2018-22)

 Tuesday : 11 AM – 01 PM

 Saturday : 11 AM – 01 PM

DARBHANGA COLLEGE OF ENGINEERING, DARBHANGA th Sem. Branch:- Electrical & Electronics Engineering Batch- (2018-22)

Subject :- ADC

COURSE HANDOUT

1. Scope and Objective of Course

Communication is the basic process of exchanging information. "Analog and Digital Communication System", is the subject which deals with the techniques employed in communication for analog and digital data. The subject basically deals with the different aspects of a signal and spectra. It also deals with the modulation of signals and systems and different mathematical aspects related to signals. It gives a more analytical look into the basic entities such as those of signals, modulation, noise etc. which form the base for higher studies in telecommunication.

Course Objectives:

After the completion of this course the students will be able to:

 CO1: Apply different mathematical concepts like Fourier series and Fourier transform and different circuit design concept to understand different modulation and demodulation techniques.

CO2: Compare the performance of different modulation techniques.

CO3: Understand working and operation of Digital communication principle.

CO4: Able to compute and analyse error correction codes.

CO5: Able to understand modern communication system.

Course Outcomes:

On completion of this course, the students will be able to

- 1. Understand different modulation and demodulation techniques analog and digital communication.
- 2. Apply signal and system analysis tools in the time and frequency domains, including Impulse response, convolution, frequency response, Fourier series, Fourier transform, and Hilbert transform.
- 3. Develop the ability to compare and contrast the strengths and weaknesses of various communication systems.
- 4. Able to understand error control coding techniques.

5. Prepare and deliver an oral presentation about a topic of current interest in the field of communications.

2. Textbooks

- TB1: Simon Haykin, "Communication Systems", 4th edition, John Wiley & Sons, 2006, ISBN 812650904X, 9788126509041.
- TB3: Allen V. Oppenheim & Allen S. Willsky, "Signals and Systems", 2nd edition, Prentice Hall, 1996, ISBN 0138147574

3. Reference Books

- RB1: A. Bruce Carlson, Paul B. Crilly and Janet C. Rutledge, "Communication System" 4th edition, TMH, 2002, ISBN 0070111278
- RB2: George Kennedy and Bernard Davis, "Electronics Communication Systems" 4th edition, TMH, 1999, ISBN 9780074636824
	- RB3: J. Proakis & M. Salehi, "Communication system engineering", 2nd edition, Prentice Hall, 2002, ISBN 0130617938, 9780130617934

Other readings and relevant websites

Syllabus

Evaluation and Examination Blue Prints:

Internal assessment is done through quiz tests, presentations, assignments and projects work. Two sets of question paper are asked from each faculty and out of these two, without the knowledge of faculty, one question paper is chosen for the concerned examination. Examination rules and regulations are uploaded on the student's portals. Evaluation is a very transparent process and the answer sheets of sessional tests, internal assessment assignments are returned back to the students.

The components of the evaluation along with their weightage followed by the university are given below:

Lecture Plan

ASSIGNMENT-I

 $\mathbb{R}^{n+1} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n+1} \times \mathbb$

 $Assumenr - 2$ $(1,1)$ Subject: Analog & Difital Communication System Subject Code: PCC-EEE19 1 Explain the relation between the frequency of phane modulation. Use the necessary diagrams. (2) Compare between wideband FM and noviousband FM. Use conson's reale to compare the bondwidth that would be required to transmit a bareband signal with frequency trange from 300 Hz to 3 kHz Using (i) NBFM with maximum deviation of 5 kHz and (ii) WBFM with maximum deviation of 75 kHz. 3 Explain the FM generation by Annostrong's indirect method. A 100 MHz cannon is trequency modulated by 10 kHz wave. For a frequency deviation of 50 km2, calculate the \bigoplus modulation index of the FM signal. 3 Determine the Bandwidth of a FM sware when the maximum deviation allowed 0% 75 KHz and the modulating signal has a frequency of 10 KHz. 10 Movimum trequency aleviation and the movimum (a) 80 kHz, 160 kHz (b) 75 kHz, 200 kMz (c) 60 km2, 170 km2 (d) 75 km2, 250 km2 1) What is the value of cannon frequency on the following equation for the FM signal. $V(t) = 5 cos(6600 + 12 sin 2sin^{2})$ (b) 1650 Hz (d) 1050 Hz (a) 1150 Hz $(c) 2500 Hz$

Question Bank

Analog and Digital Communication

Analog & Digital Communication System

Module-1 LECTURE-1

Basic blocks of Communication System

Information source :-

- The objective of any communication system is to convey information from one point to the other. The information comes from the information source, which originates it
- Information is a very generic word signifying at the abstract level anything intended for communication, which may include some thoughts, news, feeling, visual scene, and so on.
- The information source converts this information into physical quantity.
- The physical manifestation of the information is termed as message signal

Input Transducer :-

- Any device that converts input energy/power into another can be termed as transducer.
- An electrical transducer defined as an apparatus that converts some physical changeable (Pressure, force, temperature etc..) into similar variations within the electrical signal at its output .

Transmitter :-

- The objective of the transmitter block is to collect the incoming message signal and modify it in a suitable fashion (if needed), such that, it can be transmitted via the chosen channel to the receiving point.
- The functionality of the transmitter block is mainly decided by the type or nature of the channel chosen for communication.

Channel :-

- Channel is the physical medium which connects the transmitter with that of the receiver.
- The physical medium includes copper wire, coaxial cable, fibre optic cable, wave guide and free space or atmosphere.
- The choice of a particular channel depends on the feasibility and also the purpose of the communication system.

Noise:

• Noise is the undesirable electrical energy that enters the communication system and interferes with the desired signal. It is unpredictable in nature.

- It can be man made and natural
- It is produced at the transmitter channel and also at the receiver entirely.

Receiver:-

- The receiver block receives the incoming modified version of the message signal from the channel and processes it to recreate the original (non-electrical) form of the message signal.
- There are a great variety of receivers in communication systems, depending on the processing required to recreate the original message signal and also final presentation of the message to the destination.

Destination:-

- The destination is the final block in the communication system which receives the message signal and processes it to comprehend the information present in it.
- Usually, humans will be the destination block.

Block of Communication System (Advanced)

- Source encoder compresses message to remove redundancy
- Encryption protects against eavesdroppers and false messages
- Channel encoder adds redundancy for error protection

Analog Vs Digital Data

 \triangleright Analog signals Values varies continously

- \triangleright Digital signals Value limited to a finite set Digital systems are more robust
- \triangleright Binary signals Have 2 possible values Used to represent bit values Bit time T needed to send 1 bit Data rate $R = 1/T$ bits per second

Modulation

"Modulation is the process of superimposing a low frequency signal on a high frequency carrier signal."

OR

"The process of modulation can be defined as varying the RF carrier wave in accordance with the intelligence or information in a low frequency signal."

OR

"Modulation is defined as the precess by which some characteristics, usually amplitude, frequency or phase, of a carrier is varied in accordance with instantaneous value of some other voltage, called the modulating voltage."

 $m(t)=cos(\omega t)$

Message signal: m(t)=Acos(ωt+ϴ)

Carrier Signal: C(t)=A_c cos(ω_ct+Θ)

Where ω_c is much greater then ω

AM and FM Modulation

Need of Modulation

- 1. If two musical programs were played at the same time within distance, it would be difficult for anyone to listen to one source and not hear the second source. Since all musical sounds have approximately the same frequency range, form about 50 Hz to 10KHz. If a desired program is shifted up to a band of frequencies between 100KHz and 110KHz, and the second program shifted up to the band between 120KHz and 130KHz, Then both programs gave still 10KHz bandwidth and the listener can (by band selection) retrieve the program of his own choice. The receiver would down shift only the selected band of frequencies to a suitable range of 50Hz to 10KHz.
- 2. A second more technical reason to shift the message signal to a higher frequency is related to antenna size. It is to be noted that the antenna size is inversely proportional to the frequency to be radiated. This is 75 meters at 1 MHz but at 15KHz it has increased to 5000 meters (or just over 16,000 feet) a vertical antenna of this size is impossible.
- 3. The third reason for modulating a high frequency carrier is that RF (radio frequency) energy will travel a great distance than the same amount of energy transmitted as sound power.
	- Antenna size gets reduced.
	- No signal mixing occurs.
	- Communication range increases.
	- Multiplexing of signals occur.
	- Adjustments in the bandwidth is allowed.
	- Reception quality improves.

 $\left(0 \right)$ FOURIER. SERIES FOURTER. SERTES
Leh $x(t) = ce^{aT} \Rightarrow \text{chemical's signal}$
 $1f \le 4a \text{ are real}$
 $x(t)$ $\frac{1}{0.70}$ -9.10 18 a is purely imaginary and c=1 is functy imaginary and $e=1$
a right of d'unet periodic signal $\begin{aligned}\n\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial$ $e^{\frac{1}{2}(\omega_0 t)} = e^{\frac{1}{2}(\omega_0 t)} \cdot e^{\frac{1}{2}(\omega_0 T)}$ $e^{\frac{1}{3}u_0t} = e^{\frac{1}{3}u_0t} \cdot e^{\frac{1}{3}u_0t}$ are must have, $e^{\frac{1}{3}u_0t} = 1$
it means, for periodicity we must have, $e^{\frac{1}{3}u_0t} = 1$ it means, for periodicity we must have, value of T
it means, for periodicity is periodic for any value of T with wo =0, then n(4) =1, which is periodic W'
with wo =0, then n(4) =1, which is period (the smallest positive
with wo =0, then the functureable feriod (the smallest positive v_0 to, then the functuring the first = 1 is,
value of T) To of x(t) for which $e^{\frac{1}{3}u_0T} = 1$ is, $e^{\frac{1}{1}u_0T} = e^{\frac{1}{1}u_0\frac{22T}{1-u_0}T} = e^{\frac{1}{1}2\sqrt{T}}$ $T_0 = \frac{25T}{100}$ 127 To $\frac{227}{\lceil \nu \rceil}$
 127 To $\lceil \frac{227}{\lceil \nu \rceil} \rceil$ = $\frac{227}{\lceil \nu \rceil}$ = $\frac{227}{\$ $\left(\frac{12}{100} \left[\frac{100}{100} \right] + \frac{100}{100} \left(-201 \right) = 1 - 10 = 1$ and et have it it is just is periodic signal hang functionental proved Hat, $x(t) = e$ period of $T_o = \frac{2\pi}{(\mu h)}$

 $\rightarrow i$

Scanned by CamScanner

He periodic signal have infinite total energy bit.
finite average power. $\frac{c_{\mu}}{c_{\mu}}$ $x(t) = e^{i\omega_{a}t}$ $x(t) = e^{\frac{t}{3}w_0t}$
 $E = \int_{0}^{2} |x(t)|^2 dt$ for one heaved, $E = \int_{0}^{T} |x(t)|^2 dt$ $E_{\text{pmod}} = \int_{0}^{\infty} |e^{4\omega_{0}t}|^{2}d\theta$ $\sqrt{3\pi\varphi}$ $|x(t)| = |e^{i\omega_0 t}|$ $=\frac{T_0}{s}$ 1. d+ = T_0 = $|cos \omega_3t + 1sin \omega_3t|$ = $\frac{1}{\cos^2 \omega_3 + \cos^2 \omega_4 + \sin^2 \omega_4 + \cos^2 \omega_5 + \cos^2 \omega_6 + \cos^2 \omega$ Priema $=\frac{1}{10}$ Epensal = 1 x(4) = e just to be periodic of $e^{j\omega T_0}$ = to be periodic periodic
 $e^{j\omega T_0}$ = \rightarrow condition for periodic $e^{j\omega T_0}$ = \rightarrow conclision for periodic
 $e^{j\omega T_0}$ = \rightarrow conclision for periodic
which implies that ωT_0 is a multiple of 25, if $144 + 476 = 188$
 $188 + 69 = 112$
 $121 = 11$
 $131 = 271$
 $141 = 112$
 $151 = 271$ $5, 25$ So, ind = 275
To satisfy @ w must be integer multiple of wo. To satisfy 10 w must be integer much performentials that is tormonically related net of a fundamental
is a ret of periodic & exposes tools with fundamental is a ret of pariodic & exposes take it single frequency wo.
frequences that are all multiples of single frequency wo. $4k^{14} = e^{ikw_0t}$ $k = 0, \pm 1, \pm 2, \ldots$ $-\beta$ $k = 0$, $\phi_k(t)$ is a constant. for $k = 0$, $\phi_k(t)$ is a constant.
for $k \neq 0$, $\phi_k(t)$ is a periodic with fundamental frequency
($k \neq 0$, $\phi_k(t)$ is a periodic with fundamental period, $\frac{25\Gamma}{164} = \frac{7}{15}$ a parisonel fundamental period, 225 = To

Scanned by CamScanner

I The fain of equation that defines the Fourier Serves of a periodic continuous time signal schie Continuous time signal
 $\oint K(t) = \sum_{k=-\infty}^{\infty} a_k e^{j k w_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{j k (2\pi ft)}$ $\cos \omega, \quad q_{\mathsf{X}} = \frac{1}{T} \int \left(\frac{x(t)}{T} \right) e^{-\frac{1}{2}k \omega_0 t} dt - \frac{1}{T} \int \left(\frac{x(t)}{T} \right) e^{-\frac{1}{2}k \left(\frac{2\pi}{T} \right) t} dt$ The circ fficient as is the dc on constant component of $x(t)$ with $k = 0$ $a_0 = \pm \int x(t) dt$ $90, 90 = 7$
which is sinfly the average value of x (t) ores one when is the fourthton in Trugamometric from Fourier, Meries Representation, in the filmer is the space of form e representation of fundo non
w(t) = $a_0 + \sum_{k=1}^{\infty} (a_k \cosh \omega_0 + b_k \sin k \omega_0 + b_k \omega_0)$ where $W_0 = \frac{25\Gamma}{76}$ $9k = \frac{2}{76} \int_{6}^{6} n(y) \cosh w_3 + dk$ $b_{k} = \frac{2}{T_{0}} \int_{0}^{\frac{1}{T_{0}}} nt^{2} \sin k \omega_{0} t d^{2}t$ bk $\frac{\pi}{6}$ of
a is the dc combonent of the signal
a = $\frac{1}{4}$ (x(b) dt $a_0 = \frac{1}{T_0} \int_{0}^{1} x(t) dt$

 \bigcirc Et Consider a periodic signal x(1), with fundamental trequency 25, that is expresed as, $y^{2\pi}$, $y = \sum_{k=-3}^{+3} a_k e^{jk2\pi k}$
 $y = \frac{1}{2}a_k e^{jk2\pi k}$ where $q_0 = 1$, $q_1 = q_{-1} = \frac{1}{4}$, $q_2 = q_{-2} = \frac{1}{2}$ $rac{1}{2}a_0$ $rac{1}{3}a_1 = 9 - 3 = \frac{1}{3}$ and, $a_3 = a_{-3} = \frac{1}{3}$

x(4) = 1 + $\frac{1}{4}$ ($e^{12\pi t} + e^{-32\pi t}$) + $\frac{1}{2}$ ($e^{34\pi t} + e^{-34\pi t}$)

($e^{34\pi t}$) + $\frac{1}{2}$ ($e^{34\pi t}$) + $\frac{1}{2}$ ($e^{34\pi t}$) $+\frac{1}{3}(e^{36x+}+e^{-36x+})$ $= 1 + \frac{1}{2} \cos 2\pi t + \frac{1}{4} \cos 4\pi t + \frac{2}{3} \cos 6\pi t$ $= 1 + \frac{1}{2} \cos 2\pi t + \cos 4\pi t$
Now graphically we see the n'gral x(t) is built from its Lonmonic components T^{uoltz} $312/$ $T^{x_1(t)=\frac{1}{2}cos3201}$ $\frac{1}{x_0(1)} + \frac{1}{1}(1) + \frac{1}{1}(2)$ $\overline{+}$ $\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{\frac{1}{2}}$ N2(H=Cos41Th $x(t) = x_0t + 1 + x_1(t) + x_2(t)$ $7^{n_3(1)} = \frac{2}{3} cos 6^{\pi/3}$ $-\frac{1}{\sqrt{2}}\int_0^1$ $\begin{picture}(120,140)(-10,140$

Scanned by CamScanner
$$
\frac{1}{50} \text{ m} \left(\frac{1}{4}\right) = \frac{1}{20} \text
$$

 $\frac{1}{2}$

 $\frac{1}{2}$

$$
\int_{\frac{1}{25}}^{6} f(x) \, dx
$$
\n
$$
= \int_{\frac{1}{25}}^{6} f(x
$$

Scanned by CamScanner

99, From the holds of NLP
\n
$$
m(H) = \sum_{k=-10}^{\infty} \frac{sin(kw_0T_1)}{kT} e^{-\frac{1}{3}kw_0T} \quad k \neq 0
$$
\n
$$
\sum_{k=-10}^{\infty} \frac{1}{T} e^{-\frac{1}{3}kw_0T} \quad k \neq 0
$$
\n
$$
\sum_{k=-10}^{\infty} \frac{1}{T} \sum_{k=10}^{\infty} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k}
$$
\n
$$
a_k = \frac{sin(kw_0T_1)}{kT} \quad k \neq 0
$$
\n
$$
a_k = \frac{sin(kw_0T_1)}{kT} \quad k \neq 0
$$
\n
$$
a_k = \frac{sin(kw_0T_1)}{kT} \quad k \neq 0
$$
\n
$$
a_0 = \frac{2r_1}{T} = \frac{2 \cdot T_1}{T} = \frac{r_0}{T} = \frac{r_0}{T}
$$
\n
$$
a_0 = \frac{2r_1}{T} = \frac{2 \cdot T_1}{T} = \frac{r_0}{T} = \frac{r_0}{K} = 0
$$
\n
$$
a_1 = a_1 = \frac{1}{T} \quad a_2 = a_1 = \frac{r}{3} \quad a_3 = \frac{r}{3} \quad a_5 = a_1 = \frac{r}{3} \quad a_6 = a_1 = \frac{r}{3} \quad a_7 = a_1 = \frac{r}{3} \quad a_8 = a_1 = \frac{r}{3} \quad a_9 = a_1 = \frac{r}{3} \quad a_9 = a_1 = \frac{r}{3} \quad a_1 = \frac{r}{3} \quad a_1 = \frac{r}{3} \quad a_1 = \frac{r}{3} \quad a_2 = \frac{r}{3} \quad a_3 = \frac{r
$$

FOURIER TRANSFORM

Fourier, Transforene

\n
$$
\int_{0}^{1} x(t) = \frac{1}{2\pi} \int_{0}^{\infty} x(\frac{d\omega}{\omega}) e^{-\frac{1}{2}\omega t} d\omega
$$
\nThus, $x(\frac{d\omega}{\omega}) = \int_{0}^{\infty} x(\frac{d\omega}{\omega}) e^{-\frac{1}{2}\omega t} d\omega$

\nThus, $x(\frac{d\omega}{\omega}) = \int_{0}^{\infty} x(\frac{d\omega}{\omega}) e^{-\frac{1}{2}\omega t} d\omega$

\nSo, $x(t) = e^{-\frac{1}{2}\omega t} \int_{0}^{\infty} e^{-\frac{1}{2}\omega t} d\omega$

\nSo, $x(t) = e^{-\frac{1}{2}\omega t} \int_{0}^{\infty} e^{-\frac{1}{2}\omega t} d\omega$

\nThus, $x(\frac{d\omega}{\omega}) = \int_{0}^{\infty} e^{-\frac{1}{2}\omega t} e^{-\frac{1}{2}\omega t} d\omega$

\nThus, $x(\frac{d\omega}{\omega}) = \int_{0}^{\infty} e^{-\frac{1}{2}\omega t} e^{-\frac{1}{2}\omega t} d\omega$

\nThus, $x(\frac{d\omega}{\omega}) = \int_{0}^{\infty} \frac{1}{\sqrt{\omega}} e^{-\frac{1$

Scanned by CamScanner

 \bigcirc

$$
x(t) = e^{-a|H} \qquad \text{a } y_0
$$
\n
$$
x(t) = \int_{0}^{2} e^{-a|H|} e^{-\int u^L dt}
$$
\n
$$
x(t) = \int_{0}^{2} e^{-a|H|} dt + \int_{0}^{2} e^{-a|H|} dt
$$
\n
$$
= \int_{0}^{2} e^{a} e^{-\int u^L dt} dt + \int_{0}^{2} e^{-a|H|} dt
$$
\n
$$
= \frac{1}{a - 1}e^{-\int u^L dt} dt + \int_{0}^{2a + 1} e^{-\int u^L dt} dt
$$
\n
$$
= \frac{1}{a - 1}e^{-\int u^L dt} dt + \int_{0}^{2a + 1} e^{-\int u^L dt} dt
$$
\n
$$
= \int_{0}^{2a + 1} 8(4) e^{-\int u^L dt} dt + 2|
$$
\n
$$
= \int_{0}^{2a + 1} 8(4) e^{-\int u^L dt} dt + 2|
$$
\n
$$
= \int_{0}^{2a + 1} 8(4) e^{-\int u^L dt} dt + 2|
$$
\n
$$
= \int_{0}^{2a + 1} 8(4) e^{-\int u^L dt} dt + 2|
$$
\n
$$
= \int_{0}^{2a + 1} 8(4) e^{-\int u^L dt} dt + 2|
$$
\n
$$
= \int_{0}^{2a + 1} 8(4) e^{-\int u^L dt} dt + 2|
$$
\n
$$
= \int_{0}^{2a + 1} e^{-\int u^L dt} dt + 2 \int_{0}^{2a + 1} e^{-\int u^L dt}
$$
\n
$$
= \int_{0}^{2a + 1} e^{-\int u^L dt} dt + 2 \int_{0}^{2a + 1} e^{-\int u^L dt}
$$
\n
$$
= \int_{0}^{2a + 1} e^{-\int u^L dt} dt + 2 \int_{0}^{2a + 1} e^{-\int u^L dt}
$$
\n
$$
= \int_{0}^{2a + 1} e^{-\int u^L dt} dt + \int_{0}^{2a + 1} e^{-\int u^L dt} dt
$$
\n
$$
= \int_{0}^{2a +
$$

47 Me Fouries Transform for periodic, Signals We can construct the funion transform of a periodic We can construct the funion transporting of a preventation. ectly trom its room.
The resulting transform consists of a The resulting transform consists of with train of impulses in the trequency
the areas of the impulses proportional to the the areas of the influents. the areas of coefficients.
Family consider a signal x(#) with family fansform \int_{ω} Consider $\frac{1}{2}X(j\omega) = 2\pi \delta(\omega - \omega_0)$ -
where, $\frac{1}{2}X(j\omega) = 2\pi \delta(\omega - \omega_0)$ and 2π $X(i\omega)$
where, $X(i\omega) = 2 \pi \delta(\omega - \omega_0)$. The simple impulse of area 27 at $\omega = \omega_0$
 $X(i\omega)$ is it is single impulse of area 27 at $\omega = \omega_0$ \times (ria) To determine the signal x(it) fan which this is the γ_{pnm} , we can append
 γ_{pnm} , we can append
 γ_{pnm} , we can append a just due $= \frac{1}{2\pi} \int_{\infty}^{\infty} x(1\omega)^{2} dx$
 $= \frac{1}{2\pi} \int_{\infty}^{\infty} 2\pi d(\omega - \omega_{0}) e^{i\omega t} d\omega$
 $= e^{i\omega t} \int_{\omega}^{\infty} 2\pi d(\omega - \omega_{0}) e^{i\omega t} d\omega$
 $= e^{i\omega t} \int_{\omega}^{\infty} 2\pi d(\omega - \omega_{0}) e^{i\omega t} d\omega$
 $= e^{i\omega t} \int_{\omega}^{\infty} 2\pi d(\omega - \omega_{0}) e^{i\omega t} d\omega$ relation $e^{\frac{1}{2}i\omega_0 t}$ (i) $e^{\frac{1}{2}i\omega_$ s_{21} in general, if $x(i\omega)$ is of the form of x
of impulse equally staced in frequency, that is,
of impulse equally $x = \frac{1}{2}\pi a_k \delta(\omega - k\omega_0)$ $x(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$ So, if we compare 1 1 flu)

Scanned by CamScanner

 $\frac{1}{\sqrt{2}}$

$$
\frac{3}{2}x + 1 = \frac{3
$$

Į

$$
\frac{1}{2} \int_{0}^{1} \frac{1}{3} \cos \theta_{y} \quad \frac{8(1)}{1} \quad \frac{e^{2\pi}}{1} \quad \frac{1}{3} \times \frac{1}{3} \quad \
$$

on all collections and the collection

 $\overline{\mathcal{A}}$

j

L

=> Concept of Modulation $P_{n} = x_1 y_1 \longleftrightarrow x_2 y_2$ (10)
Hery $\chi(t)$ (0525) \Rightarrow $\frac{\chi(t)-\frac{1}{2}}{2}$ $V(H)\left\{\frac{e^{i2\pi b^{+}}+e^{-i2\pi b^{+}}}{2}\right\}$ of a signal contains all the significant low frequency off a signal contains all the significant is significal $\frac{1}{2}$ such signals are country signal
assistant on modulating s grad on the point of the second state of the state of the point of the state of the stat There bare land signals have significant low frequency means they require tuge mine
is impossible to construct.
is introduced such that the frameny is increased
is introduced such that the frameny is increased is introduced such harght.
to Reduce Antenna harght. Reduce Antenna i y signal
 s_{21} that the conner signal that the cannon signal
e(t) = Ac css 2xfet, $\frac{1}{2}$ = 1MMz
add) 71000 km $=\frac{1}{\sqrt{2\pi}}\int d^{(1)}(1) d^{(2)}(1) d^{(3)}(1) d^{(4)}(1) d^{(4)}($

 $S(4) = C(4) \cdot m(4)$ schulated signal. 32 $X = \left\{ \begin{array}{c} 0 \\ -1 \end{array} \right\}$ $-$ te for $-$ the $-$ te than f_c fro $\ddot{\circ}$ chrisfication of modulation Single tone Multitone dation modula 40g (Multi frequency comple frequency menge tti frequency
menage signal madulation they CFT M(+) Merez menge signal $1 - (4)$ $tan(f) = Am cos 2\pi fm^{\frac{1}{3}}$ Λ m(d) سن برنو Range of $-\sqrt{2}$

MODULATION

Modulation is the forward in which one of the Modulation 18 the presency on phane) of the borameter (Amplitude, fragues y on pra)
Carrier signal wall be varied tinearly in accordance carrier signal circle se vous variation. Amplitude Modulation implitude Modulation
It is the procent in which emplitude of the comier It is the procent in which amplitude of the comdance signal will be changed (varice) It means d
like, if $m(H) = m$ earge signal $m(H) = m$ enge signal c(4)
Accos2orte = comier signal c(4) Hen the general expression for AM signal
from the general expression for AM signal
 $S = 11 = Ac\{1 + kamdt\}$ COS20th+ en the general expression for A^{n}
 A^{n} and A^{n}
 A^{n} $= Ar\{1 + Kanm(H)$ (OSE) C
 $= Arrphtrule (sens) for 1/3 of a SM model
\n $ka = Arrphtrule (sens) for 1/3 of a SM field$$ $x_a = Amphituele sensinfty J V$
 $x_a = Amphituele sensinfty J V
\n
$$
B = Ac^{cos2ortc} + Ack a m(t) cos2\pi t c +
$$
\n
$$
B = Mc^{cos2ortc} + Ck a m(t) cos2\pi t c +
$$$ $k_{\alpha} = AmphHence$
 $k_{\alpha} = AmphHence$
 $\frac{1}{2}R_{\alpha} = R_{c}cos2\pi f_{c} + R_{c}k_{\alpha}mH)cos2\pi f_{c} + R_{c}k_{\alpha}mH)cos2\pi f_{c} + R_{c}k_{\alpha}mH)cos2\pi f_{c} + R_{c}k_{\alpha}mH$
 $k_{\alpha} = R_{c}cos2\pi f_{c} + R_{c}k_{\alpha}mH)cos2\pi f_{c} + R_{c}d$
 $k_{\alpha} = 2R_{c}cos2\pi f_{c} + R_{c}k_{\alpha}mH)cos2\pi f_{$ Adventure of the AM signal
cheaper
Disalvantage > Addle Homal bower is worsted in the de prince d'Assemble

$$
m(H) \iff M(H) \xrightarrow{\text{LSP}_1, \text{Jg}} \text{[1)}
$$
\n
$$
m(H) \iff M(H) \xrightarrow{\text{LSP}_1, \text{Jg}} \text{[1)}
$$
\n
$$
c(H) = A_{c} \cos 2\pi f_{c} + \frac{F \cdot T}{2} \Rightarrow \frac{A_{c}}{2} \{ (f + f_{c}) + 3(f - f_{c}) \} \xrightarrow{\text{Rg}} \frac{F \cdot T}{2} \Rightarrow f
$$
\n
$$
\frac{A_{c}}{2} \{ (f + f_{c}) + 3(f - f_{c}) \} \xrightarrow{\text{Rg}} \frac{F \cdot T}{2} \Rightarrow f
$$
\n
$$
= A_{c} \text{[1]}
$$
\n
$$
S_{\text{AFT}}(t) = A_{c} \cos 2\pi f_{c} + \frac{F \cdot T}{2} \Rightarrow \frac{A_{c}}{2} \{ 3(f + f_{c}) + 3(f - f_{c}) \} \xrightarrow{\text{Rg}} \frac{F \cdot T}{2} \Rightarrow f
$$
\n
$$
+ A_{c} \text{[1]}
$$
\n
$$
= A_{c} \text{[1]}
$$
\n
$$
S_{\text{AFT}}(t) = A_{c} \text{[1]}
$$
\n
$$
S_{\text{AFT}}(t) = \frac{124}{24} \text{[1]}
$$
\n
$$
S_{\text
$$

- 7

when, $\sqrt{a = k_{\alpha} \cdot A_m} = \text{modula} + \text{tan} \text{ index of } AM$ le x100 % = M/0 of modulation on depth of modulation while physical significance of depth of modulation is file Arysical significance of depth of modulation is un signal is called as aupmont
H <1 → under modulation } > Generally
H <1 → critical modulation $\mu = 1$ \rightarrow critical modulation $\mu > 1$ \rightarrow 000.
 \rightarrow 000. AM signal le modulation of miles and the modulated by
a To what extent the comen signal is modulated by
the mercyle signal is specified by the modulations. * To what extent in specified by the line article ?
He mercy for digital is specified by the same ?
Now, for digity and the Ach cost of the cost
stam the Red cost of the cost of the cost
stam the Red cost of the cost of th $\frac{4}{3}$ $\frac{1}{3}$ and $\frac{1}{4}$ = Ac } + Ac $\frac{1}{4}$ coses if $\frac{$ on exponding, $m(H) = Am$ cos2or fm^t Am/2 Am/2

c(y) = Accs225256t +
\n
$$
S_{Rm}(\theta) := Ac \cos 225\theta t + 4 \frac{1}{2} \cos 225 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255 \right) t + \frac{1}{2} \frac{1}{2} \cos 255 \left(t + \frac{1}{2} \cos 255
$$

Шś

CONTRACTOR

Scanned by CamScanner

á.

 $P_c = \frac{A}{R} \frac{v_{R}^2}{R} = \left(\frac{A_C}{v_{R}}\right)^2 \cdot \frac{1}{R} = \frac{A_c^2}{2R}$ $P_{dc} = \frac{V_{m}}{2}$ $A_{ac} = \frac{V_{nm}}{R}$ $P_{USB} = \left(\frac{A_0A}{2\Omega}\right)^2 \cdot \frac{1}{R} = \frac{A_0^2A_1^2}{8R}$ $V_{n} = \frac{V_{m}}{V_{n}}$ RED $P_{LSB} = \left(\frac{A_{c}A_{l}}{2R}\right)^{2} \cdot \frac{1}{6R} = \frac{A_{c}^{2}A^{2}}{8R}$ $P_{4} = \frac{A_{c}^{2}}{2R} + \frac{A_{c}^{2}\mu^{2}}{8R} + \frac{A_{c}^{2}\mu^{2}}{8R}$ $\oint_{A_1} P_{\frac{1}{2}} = \frac{A_2^2}{2R} \oint_{1} 1 + \frac{1}{2} \frac{1}{2} \int_{1}^{1}$ $S_{PA} = P_{c} \left(1 + \frac{\lambda L}{2} \right)$ pourrez Paver et commercialement bound of fer after
adulation
Novel $P_4 = P_c + \frac{P_c \mu^2}{2} = P_c + \frac{P_s \mu}{2}$ after dation $P_{f} = P_{c} + \frac{P_{c}H}{2} = \frac{P_{c}h^{2}}{2}$
 $\rho_{y} = \frac{P_{c}h^{2}}{2} \Rightarrow \rho_{v}sB + P_{L}sB = \frac{P_{c}h^{2}}{4}$ why FsB = 2 1 (modulation index)
in The side loved tower defends on bel (modulation index) The side barel bouver defends on the movemers
 ϵ_{p1} as the increases, the PSB also increases te moins i increases, He PSB also moreaves
37, as le morents, He PSB also moreaves
at le = 0, He, P+ = Pc => no modulatory $A = 0$
 $\mu = 1$, $(100\% \text{ mol})$
 $\mu = 1$, $(100\% \text{ mol})$ $(100 - 10x)^{2}$
 $P_{+} = P_{c} + P_{c} = \frac{3}{2} P_{c} = 1.5 P_{c} = P_{c} + 0.5 P_{c}$ $P_{+} = P_{c} - \frac{1}{4} = \frac{1}{2}$
and $S_{AM}(H) = A_{c} \cos 2\pi f_{c} + A_{e} \cos 2\pi f_{m} + A_{e}$ $cos 2\pi f$

43, **16. in every, from 0 to 1, the 1500 A** by 50%
\nlower incared by 50%
\nNow,
$$
P_{c} = \frac{1}{2}P_{+}
$$

\n P_{0} , $P_{c} = 0.666P_{+}$, S_{-1} , $P_{c} = 66.667.8P_{+}$
\n $\Rightarrow P_{0} = 0.666P_{+}$, S_{-1} , $P_{c} = 66.667.8P_{+}$
\n $\Rightarrow \frac{P_{0}B_{-}}{2}P_{+} + \frac{P_{0}B_{-}}{2}P_{-}$
\n $\Rightarrow PSB_{-} = \frac{1}{3}P_{+}$
\n $\Rightarrow PSB_{-} = \frac{1}{3}P_{+}$
\n $\Rightarrow PSB_{-} = \frac{1}{3}P_{+}$
\n $\Rightarrow PSB_{-} = \frac{1}{3}P_{-}$
\n $\Rightarrow PSB_{-} = \frac{1}{3}P_{-}$
\n $\Rightarrow PSB_{-} = \frac{1}{3}P_{-}$
\n $\Rightarrow PSB_{-} = 0.7.8P_{+}$
\n $P_{0} = 1$
\n $\Rightarrow P_{0} = 66.66$ 40.8 P_{+} 7.95 $P_{-} = 33.333.6$ 4.9
\n $\Rightarrow P_{0} = 1$
\n $\Rightarrow P_{0} = 0.7.8P_{+}$
\n $\Rightarrow P_{0} = 0.7.8P_{+}$
\n $\Rightarrow P_{0} = 20.76P_{+}$
\n $\Rightarrow P_{0} = 33.33.6$ 4.9
\n $\Rightarrow P_{0} = 33.33.6$ 4

Substituting the value of A_L in Amer A from,
\n
$$
\oint_{R} e = \frac{A_{mnp} - A_{mnp}}{A_{mmp} + A_{mnp}}
$$
\n
$$
\Rightarrow \frac{A_{mnln} + A_{mnln}}{A_{mmp} + A_{mnp}}
$$
\n
$$
\Rightarrow \frac{A_{mnln} + A_{mnln}}{A_{mmp} + A_{mnp}}
$$
\n
$$
\Rightarrow \frac{A_{mnln} + A_{mnln}}{A_{mmp} + A_{mnp}}
$$
\n
$$
\Rightarrow \frac{A_{mnln}}{A_{mmp} + A_{mmp}}
$$
\

$$
f_{m_1} = 40 \text{ k} N_2, f_{m_2} = 50 \text{ k} N_2
$$
 (6)
\n $s_{1, b} = 2 f_{1, b} = 2 r_{1, b} s_{1, b} = 100 \text{ k} N_2$
\n $k_1 = \sqrt{k_1 - \epsilon k_2} = \sqrt{62} \text{ s}^2 + 6 \cdot \text{s}^2 = 0.9 \text{ s}$
\n $k_2 = \frac{k_2}{24} = \frac{k_1 \omega}{2 \times 1} = 200 \text{ k}$
\n $k_3 = R_2(1 + \frac{k_1 \omega}{2}) = 200 \text{ k}$
\n $k_4 = R_2(1 + \frac{k_1 \omega}{2}) = 200 \text{ k}$
\n $k_5 = R_2(1 + \frac{k_1 \omega}{2}) = 200 \text{ k}$
\n $k_6 = 100 \text{ s}^2$
\n $k_7 = 100 \text{ s}$
\n $k_8 = 100 \text{ s}$
\n $k_9 = R_2(1 + \frac{k_1 \omega}{2}) = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_2 = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_2 = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_2 = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_2 = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_2 = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_2 = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_2 = 100 \text{ s}$
\n $k_1 = 100 \text{ s}$
\n $k_2 = 100 \text{ s}$
\n $k_1 = 100 \text$

Sceneration of AM signal :sur the generation of AM signal, fillowing moduleton Square Low Modulaty Block Diagram
m(1) + E vi Savane Law 1/2 [BPF] > Sm(1) The relation between vo 2 vi for souve leur device is gren bs: $v_0 = 0. v_8 + a_1 v_1^2 + a_2 v_3^3 + \cdots$ where a , a , a , a , and the law constant . of from the block disgram, $Y_i = m(H + cH)$ = $m(H) + A_2 cos 2\pi L L$

The square bow characteristic we achieve through dide (63) some / - transferable when the applied voltage Vi 2 Vy (ext in voltage of dide) then discle exhibits square law characteristics. cut în je $P V = m(H) + (H)$
Hen, $m(H) + (H)$ should be $H = V_y$ of the post voltoff of V, must be less then Vy of darke y The off of square law denies, $y_1^3 +$... $V_2 = a_1 \{ m(t) + Ac cos 2\pi t e^t \} + a_2 \{ m^2(t) + A_1^2 cos^2 2\pi t e^t \}$ Nov, by m(h) \Leftrightarrow M(h) $\frac{2}{12} + \frac{\sqrt{364016}}{2} + \frac{115}{2} + \frac{115}{2} + \frac{17}{2} + \frac{62}{2} + \frac{1}{2} + \frac{1}{$ So, if we see corefully, equite and it are BPF

titur te setha titu te treba Is than the off of v2 after barning BPF $(Bpf)_{p|p} = a_1 a_2 \cos 2\pi f_2 t + a_2 \cdot 2a_2 \text{ m}(H) \cos 2\pi f_1 t$ the signal extract intich is around their $(81f)_{s/p} = 9, A_c [1 + \frac{2a_1}{a_1} m/t] \cos 2\pi t + \frac{c_1}{a_1} m/t$ company of work stonebard AM signal when, $\int A_c = 0$, Ac $\frac{1}{4}$ Ka = $\frac{242}{91}$

 $\mathsf{15)}$ Switching Modulator m(4) - 1 (5) V = Switching V2 BPF - 7 Spring(4) $C(H) = A_0 cos 2\pi f_0 +$ if_{P} of dide \Rightarrow $V_{1} = m(\theta) + C(\theta)$ $= m(t) + Accos 2\pi ft$ $r^{(1)}$ NUMMUNT> In general the strength of memore signal len compared to comien signal 32, He discle is mainly contralled by comments ignal. a when C(#) in tre, discle is froward bias ie, short cht when filled is we discle is feverale bias ve open cht So, the opp of discle switches between V, and O with the time invenal of $\frac{1}{2}$ x_1 So, we can write $V_2 = \sqrt{1 - \frac{d}{dx}} V_1 \cdot p(x)$ $K-\frac{1}{2}$ $1 + \frac{1}{2}$

9. 1
$$
\int
$$
 we find out the function implies
\n $f(t) = a_0 + \sum_{n=1}^{\infty} \{a_n \cos n\omega_s t + b_n \sin n\omega_s t\} / \omega_s : \frac{3\pi}{4}$
\n5.06 $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_s t$
\n $f(t) = a_0 + \$

s,
$$
\oint_{R} b(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin \frac{n\pi}{2} \cdot csn2\pi t_{2} + \sum_{n=1}^{\infty} \frac{1}{n\pi} \cdot csn2\pi t_{2} + \sum_{n=1}^
$$

 $\sqrt{2}$

$$
m_{1} \frac{s}{N} \left(\frac{s_{\text{pred}} + s}{\text{noise min}} \right) \gg 3 \times 1 \text{ in (1) cm, for the non-angled (19)}\n
$$
\frac{s}{N} \leq 1 \text{ in (1) cm}! \text{ is non-angled,}
$$
\n
$$
s_{\text{eq}} \frac{s}{N} = \frac{q_{2} n_{2}^{2} k_{6} \text{ in (1)}}{q_{2} n_{2}^{2} k_{6} \text{ in (1)}} = \frac{2}{k_{6} \text{ in (1)}}
$$
\n
$$
m_{1} \frac{s}{N} = \frac{2}{k_{6} \cdot 4 \text{ m}^{2} \cdot 5 \text{ in (1)}} = \frac{2}{k_{6} \text{ in (1)}}
$$
\n
$$
s_{\text{eq}} \frac{s}{N} = \frac{2}{k_{6} \cdot 4 \text{ m}^{2} \cdot 5 \text{ in (1)}} = \frac{2}{k_{6} \text{ in (1)}}
$$
\n
$$
s_{\text{eq}} \frac{s}{N} = \frac{2}{k_{6} \cdot 5 \text{ in (1)}}
$$
\n
$$
s_{\text{eq}} \frac{s}{N} = \frac{2}{k!} \text{ where } \cos 2\pi \text{ in } 1
$$
\n
$$
s_{\text{eq}} \frac{s}{N} \approx \frac{1}{k!} \text{ if } \cos 2\pi \text{ in } 1
$$
\n
$$
s_{\text{eq}} \frac{s}{N} \approx \frac{1}{k!} \text{ if } \cos 2\pi \text{ in } 1
$$
\n
$$
s_{\text{eq}} \text{ such small value of } \mu_{1} \text{ if } \cos 2\pi \text{ in } 1
$$
\n
$$
s_{\text{eq}} \text{ such that } \sin 2\pi \text{ in } 1
$$
\n
$$
s_{\text{eq}} \text{ is obtained by the asymptotic,}
$$
\n
$$
s_{\text{eq}} \text{ the total value of } \pi \text{ is calculated by the second.}
$$
\n
$$
s_{\text{eq}} \text{ the total value of } \pi \text{ is calculated by the second.}
$$
$$

' the input, Ro. C is very high AAA 18 Ro. C in very high, even before capacitor voltige reacher to peak voltage et input, dévode becoms Removement bien and capacitor will be diretarged. H) For efficient demodulation, the inful Rsc should be very small and R_LC should be high. 4 9f AM signal is applied to the clierde detector Paper transferred Andysis, Mary Mary Miller, Mil The de valtage closely follows the envelope of the mful. Capacity clischange bet" possible peaks causes a ripple signal of frequency est in the output. This rupple can be recluded by increasing the time constrait RC so that the capacity

div, charge very little for the point the point has been

\n
$$
Rc >> \frac{1}{4}e^{3x}
$$
\nBut make the object is together, as however, a solid make it

\nsinparallel, the object is not the circle, as however, a solid make it

\nsinparallel, the object is not the circle

\nand completed be longer completed to 1/4c, but is should be

\nand completed to 1/4m

\nand the angle of a horizontal point, and the point is not called the point.

\nThus, the point is not a point, and the point is not a point.

$$
S_{\text{max}}(t)
$$
\n
$$
S_{\text{max}}(t)
$$
\n
$$
S_{\text{max}}(t)
$$
\n
$$
S_{\text{max}}(t)
$$
\n
$$
C(t) = A_{c} \cos 2\pi t_{c}t
$$
\n
$$
S_{\text{max}}(t) = A_{c} \sin t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c} \cos 2\pi t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c} \cos 2\pi t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c} \cos 2\pi t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \cos 2\pi t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \cos 2\pi t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \cos 2\pi t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \cos 2\pi t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \tan t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \tan t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \tan t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \tan t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \tan t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n
$$
= A_{c}^{2} \tan t_{c}t + A_{c} \tan(t) \cos 2\pi t_{c}t
$$
\n<math display="</math>
Since
$$
9 \text{th} = 8 \text{th}
$$
 $\frac{3 \text{th} = 8 \text{th}$ $\frac{3 \text{th} = 8 \text{th}}{111}$

\nAssume, $1 \text{th} = 1$ $\frac{1}{2} \text{th}$ $\frac{1}{2} \text{th}$ <

C(1) =
$$
n_c \text{ to } 3\pi r
$$
, $\frac{1}{2}$
\n $\frac{50 \text{ g}}{(t)}$
\n $\frac{3 \text{ m/s}}{t}$
\n $\frac{1}{2}$
\n $\$

 $\overline{}$

c(1) = 20
$$
\sqrt{2} \cos \pi \times 10^{-5}
$$

\n $4e = 20 \sqrt{2}$ $\frac{1}{4}e = \frac{10 \times 10^{-1}}{2} = 50 \times 11$
\n $4e = 20 \sqrt{2}$ $\frac{1}{4}e = \frac{10 \times 10^{-1}}{2} = 50 \times 11$
\n $\frac{1}{2} \cos \theta = 160 \times 11$ Nonradivab
\n $\frac{1}{2} \cos \theta = 160 \times 11$ Nonradivab
\n $\frac{1}{2} \cos \theta = 160 \times 11$ Nonradivab
\n $\frac{1}{2} \cos \theta = 160 \times 11$
\n $\frac{1}{2} \cos \theta = 160 \times 11$

$$
S_{Rm_1}(4) = Ae\{1 + Ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Ae\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Ae\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = 2Aeke
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m_1L +
$$
\n
$$
S_{r} S_{Rm_1}(4) = Re\{1 - ke_{m(1)}\}cos2m
$$

4 the output is propositional to m(it) dury the tre half cycle and milt during the me half day do. in effect m(+) is multiplied by a square putres Henain Wolf Wolf $A \cap B \cap A = A \cap B$

From the Rénto of Rénto

\n
$$
W_{3}(t) = \frac{4}{\pi} \left(\cos w_{c}t - \frac{1}{3} \cos 3w_{c}t - \frac
$$

Since, \otimes S $_{DSB}(t)$ = Ac m(t) or νf_t + cane ! . therefort synchronous)
 $\mathcal{C}_{2}(t) = A_{c} m(t) cos 2\pi f_{c}t + \pi A_{c} cos 2\pi f_{c}t$ $\left(\begin{array}{cccccccccc} 1 & \cdots & \sqrt{-1} \rho_0 & \sqrt{-1} \end{array} \right)$ $= A_t^2$ m (4) cos²20Tt+

$$
= \frac{p_c^2}{2}m(1)\{y + cos \pi t\} + \frac{1}{3}
$$

\n
$$
(L \cdot P \cdot F)_{0}p = \frac{p_c^2 m(1)}{2}
$$

\n
$$
\frac{csc^2}{2}
$$
 (Local asseilab) $p_0 = R_c cos(2\pi f_c + + b)$
\n
$$
= R_c m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + + b)
$$

\n
$$
= R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)
$$

\n
$$
= R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)
$$

\n
$$
= R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)}
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)}
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)}
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)}
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)}
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)}
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\pi f_c + b)}
$$

\n
$$
= \frac{R_c^2 m(1) cos 2\pi f_c + x R_c cos(2\
$$

SINGLE SIDE BAND - SUPERFSSED, CARRIER The advantage of SSB uner AM and DSB is listh to transmitt bower and But will be saved. In SSB modulation, which no moves either the LSB on the USB that was going Bardwichth of B 42 Per one menage signal m(t). Single Side band (SSB) [1] \sim = $\langle D_d \rangle$ $M(H)$ ASB JSB 2158 LSB USB modulating ($\frac{1}{2}$ redundant panduridit la tion. mode DSB went amplying $1/9$ 190 $[(1)^{1}$ Bare Lord (9) f_{S}
 $DSB-SC$ 1 rr $\frac{1}{2}$ is $\frac{1}{2}$ <u>ئا ؟ ن</u>ا (c) $\mathcal{L}_{\mathcal{A}}$ () $\sqrt{1}$ $|u|$ (d) LSB \overline{c} (e) coherent demodulated

4 Hilbert from from (this will we in latter on) $11011(31)$ $-X_{h}(4) = H\{x(t)\} = \frac{1}{2T}\int_{t-d}^{\infty} \frac{x(\alpha)}{1-\alpha}d\alpha = x(t)\cdot D\frac{1}{\pi}$ Hilbert frankfron of X(1) Since, the $F.T$ of $\frac{1}{3L}$ $\iff -\frac{1}{3}$ sgn(f) s_1 $\left[\frac{1}{2}x_1(f) = -\frac{1}{2}x(f) \frac{f^{(n+1)}}{2} \right]^2$ Sz, 18 milli banes through of transfer function H (4) = - 1 grills then the sultant it my (1) $H(f) = -i390(f)$ $n137 = 107.07 = 107.2$ $\mathcal{A}(a^*) \models \dots \models_{\mathcal{A}} \neg \mathcal{A} \land \mathcal{A}$ 91 fillows that $\lceil H(f)| = 1$ and that $\theta_5(f) = -\pi/2$ for, $f > 0$ $\theta_{h}(f)$ and $\frac{5}{2}$ for $f < 0$ 1 | $\frac{10^{14}}{2}$ $\overline{\bullet}$ $\frac{1}{\rho}$ 8, if we change the thore of every component of m(t) by $5\frac{1}{2}$
(without change its amplitude), the resulting signal is my(t), $\frac{1}{2}$ 1/9 So, He Aillent, transformes is an ideal phane the Hilbert Frampom of m(t). shifter that shifts the bhave of every spectal comparent $1 - \pi/2$. $\mathbb{E}[\mathcal{L}(\mathcal{L})] = \mathbb{E}^{\frac{1}{2}}$

1) Time domain representation of SSB signals n f_{nom} f_{m} (f) $M_{+}(f) = M(f) \cdot U(f)$ $U = M(S) \frac{1!}{2} [U + S]^{n(1)}$ $+1 = \frac{1}{2} [M(f) + M(f) Sgm(f)]$ $L^{n+1}(\delta)$ $5 = 12$ [M(f) + (-1) M(s) sgn(f)] $\frac{1}{2}$ (p) $\frac{1}{2}$ $s_{n}e_{1}M_{h}(f) = -\frac{1}{2}n(f)sgn(f)$ = $\frac{1}{2}$ [M (f) = $\frac{1}{3}$: $\frac{1}{3}$ M = (4)] $M(G)$ B_{7} $M_{+}(f) = \frac{1}{2} [M(h_{1} + iM_{1}(f))]$ $\overline{\mathcal{F}(\mathbf{c})}$ Smilerly, from figure (C) $M(G) = N(G) \cup (G)$
= $M(G) = \frac{1}{2} [1 - \frac{2}{3} \pi^{(3)}]$ $=52$ m(f) + $\frac{1}{3}$ m/(f) $=$ $\frac{1}{2}$ [m(t) = m(t) sgn(t) $\cdot \frac{1}{3}$] $3^{\prime}M(4) = \frac{1}{2}[M(4) - 3M_h(4)]$ pariso (f) $M.(f + f)$ $M_{+}(f-f_{c})$ NOLSO (f) $M-(f-f_{c})$ \vdash (i/

Now we explain the 55B. Type 10 terms from 4H
\n
$$
sinh (4) sinh (4-3) + M_{1} (4-3) + M_{2} (4+3) + M_{3} (4+3) + M_{4} (4+3) + M_{5} (4+3) + M_{6} (4+3) + M_{7} (4+3) + M_{8} (4+3) + M_{9} (4+3) + M_{10} (4+3) + M_{11} (4+3) + M_{12} (4+3) + M_{13} (4+3) + M_{14} (4+3) + M_{15} (4+3) + M_{16} (4+3) + M_{17} (4+3) + M_{18} (4+3) + M_{19} (4+3) + M_{10} (4+3) + M_{11} (4+3) + M_{10} (4+3) + M_{11} (4+3) + M_{10} (4+3) + M_{11} (4+3) +
$$

The product of
$$
Q_{SIB}(H) = 2cswt + yaddt
$$
 He have found
\n $3ymd$ and another 558 and with a common 2ω .
\nA box from $h/d \text{ leg}$ will obtain the annual 558
\n 16ω from $h/d \text{ leg}$ will obtain the annual 558
\n 16ω from 8ω then 18ω from 16ω ,
\n 16ω from 10ω then the moduli of m/d in 8ω then
\n 16ω from 10ω when the moduli of m/d in 8ω then
\n 16ω from 10ω when 16ω when 16ω when 16ω when
\n 16ω from 16ω when 16ω when 16ω when 16ω when 16ω when
\n 16ω when 16ω when 16ω when 16ω when 16ω when 16ω when
\n 16ω when 16ω when 16ω when 16ω when 16ω when 16ω when
\n 16ω when 16ω when 16ω when 16ω when 16ω when
\n 16ω when 16ω when 16ω when 16ω when 16ω when
\n 16ω when 16ω when 16ω when 16ω when 16ω when
\n 16ω when 16ω when 16ω when 16ω when 1

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$

WSB Length $(3r)$ $\frac{1}{2} \sum_{i=1}^n \Gamma_{i,i,j}$ and the interest reduces $\frac{1}{2}$ $-f_{2}+f_{12})$ 1153 $(\cdots - \cdots - \cdots)$ $\left|\frac{1}{\sqrt{2}}\right|^{1/2} \leq \left|\frac{1}{\sqrt{2}}\right|^{1/2} \leq \left|\frac{1}{\sqrt{2}}\$ $f_{t} = f_{m}$ $-(b_2 - b_2)$ He coherent clemechalotion of SSB tone modulation $Q_{ssB}^{(4)}$ -2005 met = 2005 ($w_c \pm w_m$) 4. csw_c +
 $= 2005 (w_c \pm w_m) + c s (w_e \pm w_m)$ -lansing = (I'm have) John felteg -> cas unt - principles of the secondary states $-\sqrt[n]{\frac{n!}{n!}}$. $\frac{1}{n!}$ $\frac{1}{n!}$ $\frac{1}{n!}$ $\frac{1}{n!}$ $\frac{1}{n!}$ $\frac{1}{n!}$ $\frac{1}{n!}$ $\left(\left\{ x\right\} \right)$ μ_{ℓ}

Ly Generation of SSB The Generation methods of SSB and (i) Frequency discrimination welled ci) Phane divinimination method * Enguancy, Discrimination, Mothel A BSB aignal is found though a short cut off m(t) products Sasalt) [BPF] Sssalt) $SSB.$ $(4) = Ae \cos 2\pi f_c f$ 4 $M(f)$ $m(f) \leq$ S_{PSB} (B) $- f$ that $-f_{c}$ for $-f_{c}$. after the BPF He of P 图示意有意 2 $ft + fm$ $-$ fr \sim F

Drawbacks of Frequency discrimination method: $A^{\mathsf{m}(1)}$ $14 \text{ m}(4) \leq 17$ $-f_{\text{m}}$ \rightarrow + Pass(4) <F.T) $\frac{1}{\sqrt{2\pi}}$ He bachical $\xrightarrow{\text{BP F}}$ November f_c
 f_c additional f_c
 f_c additional f_c
 f_c and the motion of f_c $s, (BPP)_{9P} \rightarrow \blacksquare Q_{35B}$ Inco, Ideal BPF can not be constructed, the resultion 35B signal contents underind frequency in celdition Because of above chacularly 35B is limited to actual @ side Bords. Actually the speech components, lies only for voice transmission. bern 300 Hz to 350 Hz. Thus, filtering of the univonted side bard becomes relatively easy for spech signals because me tone à 600 Hz transition region avenuel the cutoff frequency fc. spectrum despect september 1990 $\frac{1}{1000}$ $\frac{1}{200}$ $\frac{1}{300}$ $\frac{1}{112}$ $\frac{1}{111}$ es de la forme de la forme
De la forme de la forme de

.

Company of the Company of the Company

Commentant Comments

VESTIGAL SIDEBAY (VSB) $\overline{40}$ As cliscureal embien, it is nation clifficult to generate emet 58B signals. A House shifters, required in the those shift method, is unrealizable, on only approximately nealizable. The generation of DSB signal is much simples, but it requires tures the signal bardwichth. Vestigal sidebunel (VSB) madulation, also called the compromise asymmetric side bard system, in a compromise being DSB and SSB. 94 inherits the advantage of DSB and SSB bit avaids their clised untoges at a small cost. VSB signals is only a little (typically 25 %) greater than that of SSB.
Is only a little (typically 25 %) greater than that of SSB. Syraus. in vsB, instant of one sidebard as shown is figure (5) Installation of the model $f(x) = \frac{1}{2\pi} \int_{0}^{1} \frac{f(x)}{x^{2}} dx$ 224 (d) Fritte 1 all de procesself, mund mallent die la papier 1) and writing for the 1 one of a company The fourth of the Context of Million f_{c}

有限 이 이

 ϵ

 ϵ/σ

ANGLE MODULATION AND DEMODULATION Here we discurs the non linear modulation of frequency modula Hrs => Non-linear, Machelation A géneral sinousidal cominen signal $Q(1) = A cos(\mu + \mu)$ art varios reported to the The effort were
focused on finding, at manage signal as phase modulation The effort were bandwidth. Initially, it feests that the FM can be g madulations scheme that would reduce the solut from this. But the For bardwidth, it's always greater that Art bordersthe Byt FM is usefull in other obthis cation. Instantaneous Frequency. In FM, the instantaneous captured frequency your in Frobertien to the modulating signal on (4). This means enery instant. (1) a generalized sinusoichel signal $Q(\theta) \frac{1}{2} \frac{bT}{\sqrt{2}} = A \cos(\omega_c t + \theta_s)$ writing DIA is the generalized angle crel is a tunction of to $sin \theta + \theta (+) = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ for the phane - if we is corst. He O(it) is straight fine again and if we will change continuously with menge signal m(+) than live falle about at any instructaneous les + (for very small internal) and at that boist are to

 1017010001131611 $A \theta B_1$ θ (4) Kw_t + θ_o the inopportant forial day crisured b, overs a groal o's tening st -70, the θ_c $A \rightarrow R$ $\Phi(P = A\cos\theta H)$ ord, A ess (voct tog) is same, \rightarrow 1 A (t) et CV2 + +2 (faller the strongth line egy) px + <4<42 and, (cvct + Oo) is tangential to O(t), the angular frequency of φ (H) is the slope of ongle φ (4) aver this small for interv protontaneous frequency cup is. $2.000(1) = \frac{d0}{d}$ $\theta(H) = \int W_1(x)dx$ the pomiting of transmittig of information of milt by vonging the angle of of a comment are known as Angle modulation (entry) for former tol modulation, and (pm) > Frequency Modulation (FM) In PM the angle OCA) is roomer linearly with m(H); $\theta(t) = \omega t + \theta_0 + k_e m(t)$ assume initial phone to =0 $\partial_{\theta}(4) = 6t + 4$ $-3(4)$ cutery $K_{\rho} = const$. 80, take reesed from PM vares $H^{\pm} = A \cos[\omega_c t + k_e^2 m T^2]$ $-3(6)$ Q modulated signal (PM) phare

So, the tostootoneous angulos frequency at that they
 $\int u L_{q}$ rolt)= $\frac{d\theta}{dL}$ = $w_c + k_p \dot{m}(t)$ Money in PM, the instantaneous angular frequency (4. Varies 3 In FM, the instrumences frequent ω_i is varied $W_i(t) = W_c + k_f^T m(t)$ (1) W_i 4(0) where Ks is a corolarly of $cos \theta = \theta(1), \frac{1}{2} [w_c + k_f \sin(\theta)] d\alpha$ $\theta(t) = \omega_c f + K_f \int m(\alpha) d\alpha^{(s)}$ constant, Kj mal Ky 3) $\oint P_{FM}(4) = A cos \left[\omega_c 4 + k_f \int_{-\infty}^{+\infty} m(\alpha) d\alpha \right]^{c_{1N}}$ Frequency modulated signal (FM) Relationship, between, Fy and PM egh (B) of FM, oit is 1
83, from egn 31b) of PM and egh control shipping $m(\theta)$ $\left(\frac{\int m(\alpha) d\alpha}{\text{m}\omega b d\alpha}\right)$ $\left(\frac{\partial m(\beta)}{\partial \beta}\right)$ $\left(\frac{\partial m(\beta)}{\partial \beta}\right)$ Frequency modulator $m(t)$ at $\frac{d}{dt}$ $\frac{m(t)}{m}$ $\frac{F_{\text{reduced}}}{m}$ $\frac{d}{m}$ $\frac{d}{dt}$ Phote modulation + 19/9/00/

Big the PM and RM are inseperable in nature. In Whereas in FM the argle of carrier is propositional to integral of m(H). and the method of generation and demodulation of each dyte of midulation is som Me Power of Angle - mochelated wave in PM or FM, the instantantian phase and frequence
Can very with time, but Amplitude scenarios constant 307. Power (P) = $\frac{A^2}{2}$ always done of the factor Se shetch por red For wave for the modulating signal (i) m(4) as shown in figure. The constant, kg and kp are 2π \times 10⁵ and 10 st, respectively, and $f_c = 100$ MHz 1 - $\frac{231 \times 10^{-40}}{100}$ and 10 %, respectively . $\frac{29.88}{100}$ mi(t)
1 - $\frac{1}{100}$ extra $\label{eq:mean} \mathcal{C}^{\mathcal{G}}_{\mathcal{A}} = \mathcal{C}^{\mathcal{G}}_{\mathcal{A}}$ $u_1 = u_2 + k$ and $v_1 = u_2 + k$ and $v_2 = 100$ x $10^{6} + 227 \times 10^{5}$ m of $=$ 10⁸ + 10⁵m(+) 32) $(\frac{f_1}{f_1})_{min}$ = 10⁸ + 10⁵[m(1)]_{m/n} = 10⁸ + 10⁵/(-1) $(4i)$ map = 10⁸ + 10⁵ [mLH] map = 10⁸ + 10⁵ = 1001 MHz Since, m(t) increanes and decreases linearly conth time, the instantanes de frequency picceares linearly from 99.9 to 100-1 MMZ over a half-cycle and decreases lineagly from 100.1 MHz to 99.9 MHz over the remaining half-cycle of the modulating signal will

for pri then pri of milti is some as FM for milt) actually, is, PM , $\theta_i(f) = \omega_c f + k_f m(f)$ s_1 instantaneous frequency, $\omega_1 = d e_i y_2$ $\omega_1 + k e_i n(t)$ $xy = f_0 = f_1 + \frac{K_p}{2\pi} r_0(4)$ $= 10^8 + 10^{\circ}$ rô(4) = $10^8 + 5 \cdot 6(4)$ S_1 $(f_0)_{min} = 10^8 + 5 [m^{(19)}]_{min} = 10^8 - 10^5 = 99.9$ MHz $(f_0)_{\text{max}} = 10^8 + 5 \left[\frac{1}{2} (4) \right]_{\text{max}} = 10^8 + 10^5 = 100 \cdot 1 \text{ MHz}$ Because no(+) switchers back and forth from a value of -20,000 to 20,000, the courier frequency switches back and forth from 99.9 for 1 MMz every half-cycle
and forth from 99.9 for 1 MMz every of rolt). tothegal isms to employ $\frac{1}{2}$ and the form of the state of the to except and for the interesting of MMM - Reported $8d_{th}(k)$ UUUWWWUUT y This indineer method of sketching pm (using mi(4) to frequency modulate a carried croates as long as m(H is controus signal. 9f m(b) is discontinues, it means that the Port ségnal tas sudden place changes and hence, mid contains impulses. This indirect method dails at boists de the discon--timety. In such case, a direct approach should be used,

 $S_{\frac{1}{2}}$ $K_{\frac{1}{2}}$ = 227 x10⁵, k_{p} = $57/z$ and S_{c} = 100 MHz. $-3a$ πm , $\frac{1}{2}a = \frac{1}{2} + \frac{k}{2}$ $m(i) = 10^8 + 10^5$ m(1) Since, m(A) switches from 1 to -1 and vice versa, the FM wave frequency switches back and buth bein 99.9 to 100.1 MHz. $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ Such scherre of commes frequency modulation is des calcides = fragmency shift keying (FSk) became Lere met) its digital signal. He derivative mi(t) is zens except at point of discontinuity of m(A) ence impulses of strength ±2 are previst This means that the frequency of the PM syral stops the same except Sport of caster of the metal $= A cos[wt + \frac{\pi}{2}mH]$ $=$ $\int_{-A}^{B} A^{s}m \omega t + \int_{0}^{B} w^{t+m} m(t) = 1$ This scheme of comes PM by a digital sygnal is called Phane stift leaping (PSK) because information digrits are transmitted by strifting the camer phane.

$$
\frac{1}{2} \text{ Gn on ren symbol from N from by 1.5 MHz, 1.404} = \frac{1}{2} \text{ Fm. } \frac{1}{2} \text{ Hm. } \frac{1}{2} \text{ Hm.
$$

VИ

$$
\frac{1}{2} \sin \frac{1}{2} \arctan \frac{
$$

Snerr(f) = 2
\nSnerr(f)
\nSnerr(f)
\n
$$
S = 2
$$
\nSnerr(f)
\n
$$
S = 2
$$
\n

 $\overline{}$

Man de Mary

 S_{n}

 \mapsto

 $\label{eq:3} \mathcal{L}=\left\{ \left\vert \left(\mathbf{r},\mathbf{r},\mathbf{R},\mathbf{V}\right) \right\vert \right\} ,\left\vert \left(\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{R}\right) \right\vert =\left\vert \left(\mathbf{r},\mathbf{r},\mathbf{R}\right) \right\vert ^{2}$

 \bigcirc

R000K 200920000
\n
$$
m(4) = Am 0652π f m² [tan 100 sin 1000] + 2π f m² [tan 1000] + 2π f m²
$$

12) > WIDE BAND FM (WBFM) 4 Bessel function Storeland definition de gives as :- $\int J_n(x) = \frac{1}{2\pi} \int e^{i(x \sin \theta - n \theta)} d\theta$ brokerty of Benet-function In (n):-(?) John J decreanes as n] increanes $3, 7, 10 > 7 (1)$ 7.10 $7.7(1)$ $J^{(j+1)} = \pi(x) = (-1)^{n} J_{n}(x)$ S_n J- $n^{(n)}$ = $\frac{1}{n}$ (n) ; n = 0 dd $\lim_{(n,1),(1,2)} \frac{1}{10!}$ $\lim_{n \to \infty} \lim_{n \$ $\sim 10^{14}$ $.15(c)$ \sqrt{m}) $\frac{m}{2}$ $\frac{1}{n}$ $\left(\pi\right) = 1$ (iv) Joins is a real quantity General Expression of WBFM General Expression et given as (et sigle tre): $S_{\text{per}}(4) = A_{c} \cos \{2 \pi f_{c} + \beta \sin 2 \pi f_{m} \}$ Now, Coso = Real {e⁷⁰} $S_{FM}(t) = Ac$ Real $\{e^{3(2\pi ft + \frac{1}{18}s)h2\pi fn + 2\pi fn\}}$ $= Ac \text{Re} \{e^{42\pi \frac{t}{c^2}} \cdot e^{4\beta \sin 2\pi \frac{t}{c} \cdot \alpha^2}\}$ $50₁$ it is a continuous periodic signal wt' + $T = \frac{1}{3}$

$$
sin\alpha, e^{i\beta\beta\theta} \tanh\theta, be^{\alpha}x(\theta) = x(4+7)
$$
\n
$$
e^{i\beta\beta\theta} \tanh\theta + \theta, be^{\alpha}x(\theta) = x(4+7)
$$
\n
$$
e^{i\beta\beta\theta} \tanh\theta + e^{i\beta\theta} \tanh\theta + \theta, e^{i\beta\theta}
$$
\n
$$
x, y \tanh\theta + e^{i\beta\theta} \tanh\theta + \theta, e^{i\beta\theta} \tanh\theta + \theta, e^{i\beta\theta} \tanh\theta
$$
\n
$$
x, y \tanh\theta = \frac{1}{\pi} \int_{0}^{\pi} \tan 2\pi \tan \theta
$$
\n
$$
x, y \tanh\theta = \frac{1}{\pi} \int_{0}^{\pi} \tan 2\pi \tan \theta + \frac{1}{\pi} \int_{0}^{\pi} \tan 2\pi
$$

$$
\int_{C_{n}}^{C_{n}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(\beta sin\theta - n\theta)} d\theta = \int_{n}^{C_{n}} (P)^{2}
$$
\n
$$
\int_{C_{n}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(\beta sin\theta - n\theta)} d\theta = \int_{n}^{C_{n}} (P)^{2}
$$
\n
$$
\int_{C_{n}}^{C_{n}} = \frac{1}{2\pi} [P] - \frac{1}{2\pi} [P] = \frac{1}{2\pi
$$

 (\hat{R}) Λ_c 3d(P) $\frac{1}{\sqrt{\frac{1}{16}}+e^{-\frac{1}{2}t^2}}\cdot\frac{1}{\sqrt{\frac{1}{16}}+e^{+\frac{1}{2}t^2}}\cdot\frac{1}{\sqrt{\frac{1}{16}}+1}\cdot\frac{1}{\sqrt{\frac{1}{16}}+1}\cdot\frac{1}{\sqrt{\frac{1}{16}}+1}\cdot\frac{1}{\sqrt{\frac{1}{16}}+1}\cdot\frac{1}{\sqrt{\frac{1}{16}}+1}\cdot\frac{1}{\sqrt{\frac{1}{16}}+1}\cdot\frac{1}{\sqrt{\frac{1}{16}}+1}\cdot\frac{1}{\sqrt{\frac{1}{16}}+1}\cdot\frac{1}{\$ $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ property $J_0(x) > J_1(x) > J_1(x) > J_0(x)$ Conclusion. (i) NBFM Considers of canien frequeny component, as no. of USBs and do no. of USBS of lin) For wisfon, streight of higher order side bords go on decrees of and finally becomes zens. (iv) 5, He lower ander siclebrels are soid to be significant. $P_4 = P_c + (P_{USB_1} + P_{USB_2} + \cdots) + (P_{LSB_1} + P_{LSB_2} + \cdots)$ y The Power of WBFM cter, $P_c = \frac{R_c^2 I_o^2(\beta)}{2R}$ and, $P_{0.5B_1} = \frac{R_c^2 I_o^2(\beta)}{2R}$; $P_{0.5B_1} = \frac{R_c I_o^2(\beta)}{2R}$

 $P_{USB_1} = P_C^2 I_D^2(P)$, $P_{USB_2} = P_C^2 I_D^2(P)$ \bigcirc S_2 $P_1 = \frac{A_0^2}{2R} \left(-1 + \frac{1^2}{2} (B)^2 + \frac{1^2}{2} (B) + \frac{1^2}{2} (B) + \frac{1^2}{2} (B)$ $+ 3^2(\beta) + \cdot - \cdot$ } = A^2 { $\sum_{n=-\infty}^{\infty} \frac{1^2}{n} (\beta)^2$ $sinke_{1}$ $\sum_{n=-\infty}^{\infty} 4n^{2}(\beta) = 1$ S_{1} $P_{4} = \frac{A_{c}^{2}}{2R}$ S_{1}^{2} P_{2} $log_{1}m$, the bower of Same as after inscludation. De Practical Bandwidth of WBFM (CARSON's RULE) The actual BW of MBAM 113 per For transmission of signal, it is hauld be tained finished by retaining on re significant side bands and eliminating insupsificant Side banels
Side banels
Care (WBFM consint of significant SB's up to EEL Ist ander) re Absen point de Hospital Band 2milled June get $AC\frac{1}{2}(\beta)$ $\frac{1}{2}$ $\frac{1}{2}$
Car2 (instin consists of significant SB's upto 2nd orders) $\overline{1}$ After symptom Bandhimitial He signal we get!- $3x23$ (up to 3^{nd} and en) $Cone3$ (up to 3^{nd} ander) $K = 342h$
 $x^2 + 3 = 3 \times 2h$
 $x^3 - 1 = 2 \times 2h$
 $x^2 - 3h$
 $x^2 - 2h$
 $x^2 - 2h$
 $x^2 - 2h$
 $x^2 - 2h$ Acessaly to Conson, WBFM complish of the CARSON'S RULEY $B_M = (B+1)*2f_{m}$ index is $\beta = \frac{\Delta f}{\Delta m}$ $\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\$ S_{1} $\frac{1}{B}w = (\frac{bf}{m} + 1)^{2 - \frac{1}{2}m}$ $\frac{1}{18M} = 2(24 + 4m)$ (23) Modulation Estimency, (M): suppone, if the wisiters, consists of might significant signs up to 1st rester dillo spectrum dil esta La Mere, the camer former, $R_{c}^{1}1(B)$ $R_{c}^{1}1(B)$
 $R_{c}^{1}1(B)$ $R_{c}^{1}(B)$
 $T_{c}^{1}1(B)$ $T_{c}^{1}(B)$ $R = \frac{A_c^2 I^2 (B)}{2R}$

He say the Jo(B) with B is like - $\begin{picture}(120,10) \put(10,10){\line(1,0){100}} \put(10,10$ He stondard values, $I_{0}(\beta) = 0$, $\beta_{11}(\beta) = 2.4$, 5.5, 8.6, 11.8. So, far the above values of β , baver taken by correlation $1\sqrt[4]{3}$ $15(1) = 5$, Heg $12 = 0$ frequency component will be zone, so that modulation $J_n(\beta) = 0$; $\beta = 24/2.5766; 11.8$ efficiency M crite become 100% $f_{L} = 0.1712121$ Q. A subscribed comés of 20%, 2MHz is fragmeny modulated by a sinusoidal menge signal of 10%, 50 k the $K_f = 25 kH_2/v_0l+$ (b) Repeat above of memory signal amplitude is doubled. $Solⁿ$ Given, $A_c = 20Y + \frac{1}{1}E = 2000$ KHz $R_m = TpV / fm = 50$ KHz $K_f = 25 \frac{kH_2}{v_0H_3}$ $f_{min} = f_{2} - k_{f} m(f)$ s_{9} $f_{here} = f_{e} + k$ $f_{m} = 0.5$ $= 2000 - 25710$ $=(2000 + 25710)$ $=170$ km_{2} 12250 KHz s_{2} , $\beta = \frac{M}{m} = \frac{k_{1} \cdot A_{2}}{m} = \frac{2 \frac{3k}{8}k}{m} = 5$

 $\circled{2}$

 (9) Now, for, FM we won't to Vanies the forequery of comes signal according to the Amplitude of meninge signal IAAAA So, we use the vesigefull Disde have voniable dépendement in the $\begin{array}{|c|c|c|c|}\n\hline\n\textbf{P} & \textbf{P} & \textbf{P} & \textbf{P} \\
\hline\n\textbf{P} & \textbf{P} & \textbf{P} & \textbf{P} & \textbf{P} \\
\hline\n\textbf{P} & \textbf{P} & \textbf{P} & \textbf{P} & \textbf{P} \\
\hline\n\end{array}$ Depletion reagion, which months according to applicad volt-ge. Latitude $C = \frac{E A}{W}$, as never Now, out chifty FM biby valtage Υ then $M \Upsilon$ L 3 G T 7 BCXCH we attend the day to do the way to the way Nett) is variable with memorye signal onder that menge n'effet is no applied of disde 50 as menge signal increasing x(b) increases $\int_{1}^{1} f_1 = \frac{1}{2\pi \sqrt{LC_0(1 + \frac{DC}{C_0}x!)^2}}$ $\int_{\mathbb{S}^n}$ new, $\int_{\mathbb{S}^n}$ $\int_{\mathbb{S}^n}$ $\int_{\mathbb{S}^n}$ $\int_{\mathbb{S}^n}$ $\int_{\mathbb{S}^n}$ $\int_{\mathbb{S}^n}$ $155 = 2\pi\sqrt{LC} \sqrt{1+\frac{AC}{C}} mB$ ωh fc = $\frac{1}{2\pi rL}$ Now, the instance ory frequency $V_1 = f_c (1 + \frac{AC}{C}X(1))^{-1/2}$ $f_0 = \frac{1}{25T} \sqrt{\frac{1}{LC}N/L}$ (Usif) binomial expension $H_0 = f_c \left[1 - \frac{AC}{26}x(1) \right]$ fie $\psi = \frac{1}{2\pi \sqrt{L(\omega + \Delta c)H^2}}$

De Condinert, me thand of FM Generation Indirect method, the frequency is generated with LC oscillator, but the frequency generated by LG clif is not stable. So we didn't get the stable output frequency. $rac{1}{2}$ $rac{1}{2}$ 4 In indirect method, we generate the frequency from Crystal oscillators because it gives a stable output, but the problem , to I MMZ only.
Is, it gives a stable frequency of to I MMZ only. So, Print me generate, NBFM and voirg invalibilités me achieve wisf M. E NBFM Frequency Mixer NBFM Generated \rightarrow S \rightarrow $DSB-SC$ Contact OS (Noto) Acsinert $\sqrt{\pi/2}$ WBFM < BPF A Accosurt $P>1$ conystal Oscillatory Fréquency multiplier ps nom à but square lang deve followed Ly proper pan bord filles. The string of the United States Frequency multipless surful = Swism (1) $= A_c \cos(2\pi\pi\hbar + M\beta \sin 2\pi\hbar \pi)$ n should be such that, [MBJ] " (1)

 \mathcal{N}^{\prime} Analysis of individual

 (22)

4) Mere for ils resonant frequency culare me of Amplitude (24) this for must be greter than the input frequency. 4) Here if we replace that, in FM work the finance = 1400kg by nee 1 J ne expraeteristic of frequeny relativentif at f_{mov} , goin = 0.7. Sy The amplitude = 10 x0.7 = 7 v at f_{min} $g_{ain} = 0.2$ g_{1} H_{μ} amplitude = 1040.2 = 2V S_{2} of Γ close 10 MM MM Solentine $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ at tracted
at frage ampletude = 2 red, FM work Here, and into AM Wave comments and met After parry $\begin{picture}(180,10) \put(0,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}}$ Envelope $C = \{0, \ldots \}$ une jeu menoge, signal. Note & Mere, Me Join frequency characteristic of Tuned Amplifier will be introduce in frequency to voltage conversion. berfiety connissances to transmitted memorye signal avel NEC NEXTRAN $\mathcal{M}(\mathcal{O}_{\mathcal{C}}) = \mathcal{O}_{\mathcal{C}}(\mathcal{O}_{\mathcal{C}})$ $\int_{\mathbb{R}^{2n}}\int_{\mathbb{R}^{2n}}\left|\nabla f\right|\left|\nabla f\right|\right|^{2} \leq C_{1} \left(\int_{\mathbb{R}^{2n}}\int_{\mathbb{R}^{2n}}\left|\nabla f\right|\right)^{2} \int_{\mathbb{R}^{2n}}\left|\nabla f\right|\left|\nabla f\right|\right|^{2} \leq C_{1} \left(\int_{\mathbb{R}^{2n}}\left|\nabla f\right|\right)^{2} \int_{\mathbb{R}^{2n}}\left|\nabla f\right|\left|\nabla f\right|\right|^{2} \leq C_{1}$

Then PLL is said to be working is the Lock mode $I(F)$ Φ_1 (+) whould be mode equal to Φ_2 (+) $P_{t}(H) = P_{t}(H)$ Her, PLL is said to be working in CAPTURE MODE 4 For Reconstruction of manage signal year subfite whould $S_v(t) = A_v sin\{2\pi f_c t + \frac{h}{2}(13) - \frac{h}{2} \cos\frac{1}{2}t\}$ 35 fm (+) = Ac cas { $m!$ +++++ 4 (+)} Son the multiples o/p is greated S_v (A) \times Scm(H) $\frac{A_c}{2}$ $\frac{A_v}{2}$ $\frac{S_v}{2}$ ($4\pi\frac{1}{2}$ + $\frac{A_v}{4}$ + $\frac{A_v}{4}$ $1 - \frac{1}{\sqrt{2}} \int_{0}^{1} \frac{e^{i\theta} (1 - \theta)}{1 - \theta} d\theta$ $S_V(H)$, Sproft)= $\frac{A_C A V}{2}$ $S_i r_3 (2\pi f_L A + \varphi_l (H) + \varphi_l (H))$ $\int_{1}^{x^{2}} \sin^{-1} x \, dx = \frac{A_{c}A_{v}}{2} \sin^{-1} (4(11 - 4214))$ Let φ_1 (4) $-\varphi_2$ (4) $\cong \varphi_e$ (4) to for PLL, Quelle make very close to gritt so that So, egrille the multiplier out put, and if it is form though LPF: SEMUN = Acta Sis (york + Q, LH) + Q, LH] - Acta Sin {Q, LH] Mon, by Decks is very smalled tion, 15. per 19 = 4e (A). G_{7} $(MUL)_{9|P|} \cong -A_{c}Av$ $\Phi_{e}(H)$ $= 4e4$

7.6 16
$$
\frac{1}{2}
$$
 m b $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{1}{2}$
\n10.6 16 $\frac{1}{2}$ km b $\frac{1}{2}$ m d $\frac{1}{2}$
\n10.11 $\frac{1}{2}$ km 100 h(l)
\n10.12 $\frac{1}{2}$ km 100 h(l)
\n10.13 $\frac{1}{2}$ km 100 h(l)
\n10.14 $\frac{1}{2}$ km 100 h(l)
\n10.15 $\frac{1}{2}$ km 100 h(l)
\n11.16 $\frac{1}{2}$ km 100 h(l)
\n11.17 $\frac{1}{2}$ km 100 h(l)
\n12.19 $\frac{1}{2}$ km 100 h(l)
\n13.10 $\frac{1}{2}$ km 100 h(l)
\n14.10 $\frac{1}{2}$ km 100 h(l)
\n15.11 $\frac{1}{2}$ km 100 h(l)
\n16.11 $\frac{1}{2}$ km 100 h(l)
\n17.11 $\frac{1}{2}$ km 100 h(l)
\n18.11 $\frac{1}{2}$ km 100 h(l)
\n19.11 $\frac{1}{2}$ km 100 h(l)
\n11.11 $\frac{1}{2}$ km 100 h(l)
\n11.12 $\frac{1}{2}$ km 100 h(l)
\n11.13 $\frac{1}{2}$ km 100 h(l)
\n11.14 $\frac{1}{2}$ km 100 h(l)
\n11.15 $\frac{1}{2}$ km 100 h(l)
\n11.16 $\frac{1}{2}$ km 100 h(l)
\n11.17 $\frac{1}{2}$ km 100 h(l)
\n11.18 $\frac{1}{2}$ km 100 h(l)
\n11.10 $\frac{1}{2}$ km 100 h(l)
\n11.11 $\frac{1}{2$

 $\mathcal{L}_{\mathbb{Q}}$

10.18.3
\n1.1
$$
3\pi(1) = 4\pi cos(3\pi k + 4.4)
$$

\n1.1 $3\pi(1) = 4\pi sin(4) + 4(1)$
\n1.1 $3\pi(1) = 4\pi i$ (10.1 1)
\n1.1 $4\pi i + 4(1)$
\n2.1 $6\pi i$ (2.1 1)
\n3.1 $6\pi i$ (3.1 1)
\n4.1 6π (4.1 2)
\n5.1 10π (5.1 1)
\n6.1 10π (6.1 1)
\n1.1 10π

 $\int_{0}^{\frac{1}{2}} f(x) dx$ the plane deviation of k_{ρ} in (4) $\int_{0}^{\frac{1}{2}} f(x) dx$ $\left(1 + \frac{1}{2} \int_{0}^{1} \frac{1}{1 + \frac{1}{2} \int_{0}^{1} \frac$ S_3 $S_{\rho m}(t) = Ae^{cos\{\frac{1}{2}gt\}t} + Ke^{Imf cos\{2\sigma f_m t\}}$ Let $k_{\rho} \cdot A_{m} = \beta$ = modulation index of pry $\left\{ x_{1},...,x_{n}\right\}$ (1) $\left\{ x_{i},...,x_{n}\right\}$ $\label{eq:R1} \mathcal{A} \in \mathcal{A} \subset \mathcal{A} \subset \mathcal{A}$ to the first office of the second the second of the se $\label{eq:2} \mathcal{L}_{\mathcal{A}} := \mathcal{L}_{\mathcal{A}} \mathcal{L}_{\mathcal{A}} \otimes \mathcal{L}_{\mathcal{A}} \otimes \mathcal{L}_{\mathcal{A}}$ Szilytte generation expression "for Fin 4, pri dra same expert 90 phase shipping as men je frequeny comport (i) The Magnitude spectrum of primiring de sameas A so that Big and former requirements of PM & FM will be some! Washing who, \Rightarrow BW of PM(WBFM)
 $BW = 2(P+1) \frac{1}{10} \Rightarrow P$
 $= 2(P+1) \frac{1}{10} \Rightarrow P$
 Son firet all parameters of PM margin 199 Al standard egr of pry Sentist & Ac Cost 2017-1 + B Cos 25 Int 321 Ac = 10, fe = 1 M n_2 , fm = 3 km (1) $P = K_P A_m = 6 \text{ mod } = \Delta \varphi$ $B W = 2 (B H) \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{k} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{k} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{k} \frac{1}{k!} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{k!} \frac{1}{k!} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{k!} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{2} \frac{1}{k!} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{2} \sum_{i=1}^{n}$