| Modeling
in the Time Domain
ey

State Space This chapter covers only state-space methods.

Chapter Objectives

In this chapter you will learn the followng:

® How o find a mathematical model, called a stafe-space representation, for a

linear, time-invanant system
m  How to convert between transfer function and state-space models
m How to linearize a state-space representation

Case Study Objectives

You will be able to demonstrate your knowledge of the chapter objectives with

case studies as follows:

m (iven the antenna azimuth position control system shown on the front
endpapers, you will be able to find the state-space representation of each
subsystem.

m  Given a description of the way a pharmaceutical drug fiows through a human
being, you will be able to find the state-space representation to determine
drug concentrations in specified compartmentalized blocks of the process and
of the human body. You will also be able to apply the same concepts to an

aquifer to find water level.
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3.1 Introduction

‘Two approaches are available for the analysis and design of feedback control Sys-
tems. The first, which we began to study in Chapter 2. is known as the classical,
or frequency-domain, technique. This approach is based on converting a system’s
differential equation to a transfer function, thus generating a mathematical model
of the system thut algebraically relates a representation of the output to a repre-
sentation of the input. Replacing a differential equation with an algebraic equation
not only simplifies the representation of individual subsystemns but also simplifies
modeling mterconnected subsystems.

The primary disadvantage of the classical approach is its limited apphcabil-
ity: It can be applied only to linear, time-invariant systems or systems that can be
approximated as such.

A major advamage of frequency-domain techniques is that they rapidly pro-
vide stability and transient response information. Thus. we can immediately see
the effects of varying system parameters until an acceptable design is met.

With the arrival of space exploration, requirements for control systems in-
creased in scope. Modeling systems by using linear. time-invariant differential
equations and subscquent transfer functions became inadequatc. The stete-space,
approach (also referred to as the modern, or time-domain, approach) is a unified
method for modeling, analyzing, and designing a wide range of systems. For ex-
ample, the state-space approach can be vsed to represent nonlinear systems that
have backlash, saturation. and dead zone. Also, it can handle, convenientiy, sys-
tems with nonzero initial conditions. Time-varying systems, (for example, missiles
with varying fuel levels or lift in an aircraft Hying through a wide range of altitudes)
can be represented in state space. Many systems do not have Just a single input and
a single output. Multiple-input, multiple-output systems (such as a vehicle with
input direction and inpyt velocity yielding an output direction and an output veloc-
ity) can be compactly represented in state space with a model similar in form and
complexity to that used for single-inpur, single-output systems. The time-domain
approach can be used to represent systems with a digital computer in the loop or
to model systems for digital simulauon. With a simulated system, System response
can be obtained for changes in system parameters—an important design tool. The
state-space approach is also attractive because of the availability of numerous state-
space software packages for the personal computer.

The time-domain approach can also be used for the same class of systems
modeled by the classical approach. This alternate model gives the control systems
designer another perspective from which to create a design. While the slate-space
approach can be applied to a wide range of systems, it is not as intuitive as the
classical approach. The designer has to engage in several calculations before the
physical interpretation of the model is apparent, whereas in classical control a few
quick calculations or a graphic presentation of data rapidly yields the physical
interpretation.

In this book the coverage of state-space techniques is to be regarded as an
introduction to the subject, a springbeard to advanced studies. and an alternate
approach to frequency-domam techniques. We will lirnit the state-space approach
to linear, time-invariant systems or systerns that can be linearized by the methods of
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Chapter 2. The study of other classes of systems is beyond the scope of this book
Since state-space analysis and design rely on matrices and matrix operations, you
may want to review this topic in Appendix F, located on the accompanying CD-
ROM, before continning.

3.2 Some Observations

We proceed now to establish the state-space approach as an alternate method for
representing physical systems. This section sets the stape for the formal definition
of the state-space representation by making some observations about systems and
their variables. In the discussion that follows, some of the development has been
placed in footnotes to avoid clouding the main issues with an excess of equations
and to ensure that the concept is clear. Although we use two electrical networks to
illustrate the concepts. we could just as easily have used a mechanical or any other
physical sysiem.

We now dernonstrate that for a systemn with many variables, such as inductor
voltage, resistor voltage, and capacitor charge, we need to use differential equations
only to solve for a selected subset of system variables because all other remaiting
systern variables can be evaluated algebraically from the variables in the subset.
Our examples take the following approach:

1. We select a particular subset of all possible system variables and call the vari-
ables in this subset state variables.

2. For an nth-order system, we write n simultaneous, first-order differential equu-
tions in terms of the state variables. We call this system of simultaneous differ-
ential equations state eguations.

A. If we know the initial condition of all of the state variables at £y as well as the
system input for r = fp, we can solve the simultaneous differential equations
for the state variables forr = .

4. We algebraically combine the state variables with the system’s input and find
all of the other system variables for r = #,. We call this algebraic equation the
outpul equation.

S. We consider the state equations and the output equations a viable representation
of the system, We call this representation of the system a state-space represen-
tation.

Let us now follow these steps through an example. Consider the RL network shown
in Figure 3.1 with an initial current of ¢(0).
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1.

2.

We select the curren, i(t), for which we will write and solve a differential equa-
tion using Laplace transforms,

We write the loop equation,

Lg + Ri = v() (3.1)

. Taking the Laplace transform, using Table 2.2, Item 7 and including the initial

conditions, yields
Lisi(s) — {0)] + Ri(s) = V(s) (3.2)

Assuming the input, v{f), to be a unit step, u(r), whose Laplace transform is
W(s) = 1. s, we solve for 1(s) and pet

11 I i(0)
) = o - - + (3.3
’ R(s s+ g) 5+ % )
from which
i) = }1?(1 — e R 4 jgye RiLx (3.4)

The function i(#) is a subset of all possible network variables that we are able 0
find from Eq. (3.4) if we know its initial condition, #0), and the imnput, v{f).
Thus, i(£) is a state variable, and the differential equation (3.1) is a state equation.

- We can now solve for all of the other network variables algebraically in terms

of i(f) and the apphed voltage, v{1). For example, the voltage across the resis-
Lor 1%

Vr(#) = Ri(r) (3.5)
The voltage across the inductor is
vi() = v(£) — Ri(H) (3.6)!
The derivative of the current is
di 1 . 2
T Z[wl'.t}o Ri(1)] (3.7)

Thus, knowing the state variable, i(r), and the input, v{#), we can hind the value,
ot stafe, of any network variable at any time, ¢ = ). Hence, the algebraic equa-
tions, Egs. (3.5) through (3.7, are ouipul egiiations.

Since the variables of interest are completely described by Eq. (3.1) and Eqs.
(3.5) through (3.7). we say that the combined state equation (3.1) and the output

'Since vi(r) = vy — ve(f) = v(1) — Ri(y).

zSim:e‘?':;r—: = %vL(t) = é[v{r) — Ri(n)].

T
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equations (3.5 through 3.7) form a viable representation of the network, which
we call a state-space represeniation.

Equation (3.1), which describes the dynamics of the network, is not unique
This equaticn could be written in terms of any other network variable. For example,
substituting i = vg R into Eq. (3.1) yields

%% + vg = V) (3.8)
which can be solved knowing that the initial condition vg(0) = Ri(0) and knowing
v{t). In this case, the state variable is vg(#). Similarly, all other network variables
can now be written in terms of the state variable, vg(f), and the input, v(f). Let
us now extend our observations to a second-order system. such as that shown in
Figure 3.2.

1. Since the network is of second order, two simultaneous, first-order differential
equations are needed to sclve for two state variables. We select i(f) and g{#), the
charge on the capacitor. as the two state variables.

2. Writing the loop equation yields

di . 1(.,
LET: +R¢+Eftdr—v(rj (3.9)

Converting to charge, using {#) = dg.'dr, we get

d’g .dg 1
L—— +R—-+ _g=vi A0
But an nth-order differential equation can be converted to » simultanecus
first-order differential equations. with each equation of the form

% = gux1 + apxz + -+ Qpx, + B (D (3.11)
where each x, is a state variable, and the g;;’s and b; are constants for linear,
time-invanant systems. We say that the right-hand side of Eq. (3.11) is a linear
combination of the state variables and the input, f(¢).

We can convert Eq. (3.10) into two simultaneous, first-order differential
equations in terms of i(#) and g{(f). The first equation can be dg dr = i. The
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second equation can be formed by substituting [ idt = ¢ into Eq. (3.9) and solv-
ing for di dt. Summanizing the two resulting equations, we get

‘% =i (3-122)
di R, |1

3. These equaticns are the state equations and can be solved simultaneously for
the state variables, g{r) and i(f), using the Laplace transform and the methods
of Chapter 2, if we know the initial conditions for g(t) and i) and if we know
v{#), the input.

4. From these two state variables, we can solve for all other network variables. For

example, the voltage across the inductor can be written in terms of the solved
state variables and the input as

1
E’q
Equarton (3.13) is an output equation; we say that vy (t) is a linear combination
of the state vaniables, g(f) and (¢}, and the input, v(f).

5. The combined state equations (3.12) and the output equation (3.13} form
a viable representation of the network, which we call a state-space represen-
tation.

vi(t) — — —gle} — Rin) + vn) (3.139

Another choice of two state variables can be made, for example, vg(f) and ve (1),
the resistor and capacitor voltage, respectively. The resulting set of simultanecus,
first-order differential equations follows:

dv, R R R

—JEE ALY + Ev{f) (3.14a)
de 1

E = R'VR {3- I4b)

Again, these differential equations can be sclved for the state variables if we know
the initial conditions along with v{r). Further, all other network variables can be
found as a linear combination of these state variables.

Is there a restriction on the choice of state variables? Yes! The restriction is
that no state variable can be chosen if it can be expressed as a linear combination
of the other state variables. For example, if vg(f) is chosen as a siate variable, then
i(r) cannot be chosen, because vg(¢) can be written as a linear combination of i(f),

ISince vy (1) = L(di/d1) = —(1; C)g — R1 + vi{5), where i’ dt can be found from Eq. (3.9), and
Jidt = g.

"Since vg(f) = BOR, and vl = [l;'C)I 1dt, differentiaung vg(?) yields dvy dr = Ridi;/di) =
(R/Lyvy = (R L)[v{f)—vg — vcl and differentiating v wields dv i dr = {1 C}i = (1 RO,
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namely ve{r) = Ri(r). Under these circumstances we say that the state variables
are linearly dependent. State vanables must be linearly independent; that is, no
state variable can be written as a linear combination of the other state variuables, or
else we would not have enough information to solve for all other system variables,
and we could even have trouble writing the simultancous equations themselves.

The state and output equations can be wrilten in vector-ratrix form if the sys-
tem is linear. Thus, Eqgs. (3.12), the state equations, can be written as

x — Ax + Bu (3.15)
where
. \dgde|. . 0 |
e [di d:]’ ol l—l IC —R L]
_|4]. 10| ,—
X L.], B [l__-"L]' i = vt
Equation (3.13), the output equation, can be written as
v = Cx + Du (3.16)
where

y=w{):. C=[-1'C -R] x=[?]; D=1, u=1vD

We call the combination of Eqgs. (3.15) and (3.16) a sime-space represemation
of the network of Figure 3.2. A state-space representation, therefore, consists of
(1) the simultaneous, first-order differentizl equations from which the state var-
ables can be solved and (2) the algebraic output equation from which all other
systemn variables can be found. A state-space representation is not unigue, since
a differemt choice of state variables leads to a different representation of the same
system.

In this section we used two electrical networks to demonstrate some principles
that are the foundation of the state-space representation. The representations devel -
oped in this section were for single-input, single-oulput systems. where v, D, and
1 in Eqs. (3.15) and (3.16} are scalar quantities. In general, systems have multi-
ple inputs and muliiple outputs. For these cases, y and # become vector quantities,
and D becomes a matrix. In Secton 3.3 we will generahze the representation for
multiple-input, multiple-output systems and summarize the concept of the state-
space representation.

3.3 The General State-Space Representation

Now that we have represented a physical network 1n state space and have a good
idea of the terminology and the concept, let us summarize and generalize the repre-
sentation for linear differential equations. First we formalize some of the definitions
that we came across in the last section.
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Figure 3.3

Graphic representation
of state space and a
state vector

Linear combination. A linear combination of r variables, x;, fori = 1ton,is
given by the following sum, §:

S = Kn-rﬂ + Kn—lxn—l + - 4 K;xl (31?]

where each K; is a constant.

Linear independence. A set of variables is said to be linearly independent if
none of the variables can be written as a linear combination of the others. For ex-
ample, given x;, x;, and x3, if x, = 3x; + 6x3, then the variables are not linearly
independent, since one of them can be writien as a linear combination of the other
two. Now, what must be true sc that one variable cannot be written as a linear com-
bination of the other variables? Consider the example Kyx; = Kix, + Kaxs. If o
X = 0, then any x; can be written as a linear combination of other variables, un-
Jess all K; = 0. Formally, then, variables X, for i = 1 to n, are said to be linearly
independent if their linear combination, S, equals zero onlv if every K; = Dandne
x, = 0.

System variable. Any variable that responds to an input or initial conditions
In a systerm.

Stale variables. The smallest set of linearly independent system variables
such that the values of the members of the set at time £ along with known
forcing functions completely determine the value of all system variables for all
=,

Stare vector. A vector whose elements are the state variables.

State space. The n-dimensional space whose axes are the state variables. This
18 anew term and is illustrated in Figure 3.3, where the state variables are assumed
to be a resistor voltage, v, and a capacitor voltage, v. These variables form the
axes of the state space. A trajectory can be thought of as being mapped out by the
state vector, x(f), for a range of £. Also shown is the state vector at the particular
time £ = 4,

State space

¥g

State vector, x(f)

" State vector trajectory

State vector, x{4)
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State equations. A setof n simultaneous, first-order differential equations with
n variables, where the n variables to be solved are the state variables.

Output equation. The algebraic equation thal expresses the output variables
of a system as linear combinations of the state variables and the inputs.

Now that the definitions have been formally stuted, we define the state-space
representation of a system. A system is represented in state space by the following
equations:

X - AX + Bu (3.18)
y Cx+ Du (3.19)
for ¢+ = & and initial conditions. x{#g), where

= state vector

= denvative of the state vector with respect to time
= ourput vector

= input or control vector

= system matrix

P E ke e
|

= input matrix
C = output matrix
D = feedforward matrix

Equation (3.18) is called the stafe equation, and the vector X, the state vector,
contains the state variables. Equation (3.18) can be solved for the state varizbles.
which we demonstrate in Chapter 4. Equation (3.19) i called the output equation.
This equation is used to calculate any other system variables. This representation
of a system provides complete knowledge of all vanables of the system at any
I =1y

As an example, for a linear, time-invanant, second-order system with a smgle
input v(¢), the state equations could take on the following form:

% = ap X + appxy + byvly) {3.20a)
dx»
ar = anx +arpxt+ bov(t) (3.20b)

where x; and x; are the state variables. If there s a single output. the output equation
could take on the following form:

y = ax + 207 + dpvft) (3.2

The choice of state variables for a4 given system is not unique. The requirement in
choosing the state variables is thal they be linearly independent and that a minimurm
number of them be chosen.
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3.4 Applying the State-Space Representation

In this section we apply the state-space formulation to the representation of more
complicated physical systems. The first step 1n representing a system is to select
the state vector, which must be chosen according to the following considerations:

1. A minimum number of state variables must be selected as components of the
state vector. This minimum number of state variables is sufficient to describe
completely the state of the system.

2. The components of the stte vector {that is, this minimum number of state vari-
ables) must be linearly independent.

Let us review and clanfy these statements.

Linearly Independent State Variables

The components of the state vector must be linearly independent. For example,
following the definition of lincar independence in Section 3.3, if x|, x5, and x3 are
chosen as state variables, but x3 = 5x; + 4a,, then x3 is not linearly independent
of x; and .x;, since knowledge of the values of x; and x> will yield the value of x3.
Variables related by derivatives ure linearly independent. For example, the voltage
across an mductor, vy . is hinearly independent of the current through the inductor,
if, since vy = Ldi;, di. Thus, vy cannot be evaluated as a linear combination of
the current, i;.

Minimum Number of State Variables

How do we know the minimum number of state variables to select? Typically, the
minimum number required equals the order of the differential equation describing
the systemn. For example, if a third-order differeniial equation describes the system,
then three simultanecus. first-order differential equations are required along with
three state variables. From the perspective of the transfer function, the order of the
differential equation is the order of the denominator of the transfer function after
canceling common factors in the numerator and denominator.

In most cases another way to determine the numbcer of state variables is to count
the nurnber of independent energy-siorage elements in the system.® The number of
these energy-storage elements equals the order of the diftercntial equation and the
number of state variables. In Figure 3.2 there are two energy-storage elements. the
capacitor and the inductor. Hence, two state variables and two state equations are
required for the system.

If too few state variables are selected, it may be impossible to write partic-
ular output equations, since some system variables cannot be written as a linear

*Sometumes it 1s not apparent m a schematic how many independent energy-storage elements
there are. It 1s posstble that more than (he mmimum mmber of energy-storage elements could be
selected, leading 10 a state vector whose components number more than the mimimum required
and are not linearly independent. Selecting additional dependent energy-storage elements results
in a system matrix of higher order and more complexity than required for the solunion of the state
equations.
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combination of the reduced number of state variables. In many cases it may be
impossible even to complete the writing of the state equations, since the derivatives
of the state variables cannot be expressed as linear combinations of the reduced
number of state variables.

If you select the minimum number of state variables but they are not linearly
mdependent, at best you may not be able to solve for all other system variables. At
worst you may not be able to complete the writing of the state equations.

Often the state vector includes more than the minimum number of state vari-
ables required. Two possible cases exist. Often state variables are chosen to be
physical variables of a system, such as position and velocity in a mechanical sys-
tem. Cases arise where these variables. although linearly independent, are also
decoupled. That is. some linearly independent variables are not required in order
to solve for any of the other linearly independent variables or any other dependent
system variable. Consider the case of a mass and viscous damper whose differ-
ential equation is Mdv; dt + Dv = f{(1), where v is the velocity of the mass. Since
this is a first-order equation, one state equation is all that is required to define this
system in state space with velocity as the state variable. Also, since there is only
one energy-storage element, mass, only one state variable is required to represent
this system in state space. However. the mass also has an associated position, which
1s linearly independent of velocity. If we want to include position in the state vector
aleng with velocity, then we add position as a state varjable that is linearly indepen-
dernit of the other state variable, velocity. Figure 3.4 illustrates what is happening.
The first block is the transfer function equivalent to Mdv(n), dt + Dv(z) = f(1).
The second block shows that we integrate the output velocity to yield output dis-
placement (see Table 2.2, rem 10). Thus. if we want displacement as an output,
the denominator, or characteristic equation, has increased in order to 2, the prod-
uct of the two transfer functions. Many tmes, the writing of the state equations is
simplified by including additional state variables.

Another case that increases the size of the state vector arises when the added
variable is not linearly independent of the other members of the state vector. This
usually occurs when a variable is selected as a state variable but its dependence on
the other state variables is not immediately apparent. For example, energy-storage
elements may be used to select the state variables, and the dependence of the vari-
able associated with one energy-storage element on the variables of other energy-
storage elements may not be recognized. Thus, the dimension of the system matrix
is increased unnecessarily, and the solutien for the state vector, which we cover
in Chapter 4, ts more difficult. Also, adding dependent state variables affects the
designer’s ability to use state-space methods for design.®

|
Fixy Vi5)
i M =
X+

X(%)

b,l_

RIS

“See Chapter 12 for state-space design techmques.
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Example 3.1

Figure 3.5

Electrical network for
representation in state
space

We saw in Section 3.2 that the state-space representation is not unique. The
following example demonstrates one technigue for selecting state variables and
representing a systern in state space. Our approach is to write the simple derivative
equation for each energy-storage element and solve for each derivative ferm as a
linear combination of any of the system variables and the input that are present in
the equation. Next we select each differentiated variable as a state variable. Then
we express all other system variables in the equaticns in terms of the state variables
and the input. Finally, we write the output vanables as linear combinations of the
state variables and the input.

Representing an etectrical network

Problem Given the electrical network of Figure 3.5, find a state-space represen-
tation if the ougput is the current through the resistor.

Node 1

o (1)

|
v (1) 1 g R ,Ct,,ﬁ c

‘R{”

Solution The following steps will yield a viable representation of the network in
state space.

StepI  Label all of the branch currents in the network. These include if. i,
and ic, as shown in Figure 3.5.

Step2  Select the state variables by writing the derivative equation for all
energy-storage elements, that is, the inductor and the capacitor. Thus,

v, ]
C—df = i¢ (3.22)
dip

From Egs. (3.22) and (3.23), choose the state variables as the quantities
that are differentiated, namely v and ;. Using Eq. (3.20) as a guide, we see
that the state-space representation is complete if the right-hand sides of Egs
(3.22) and (3.23) can be written as linear combinations of the state variables
and the Input.

Since i and vy are not state variables, our next step is to express ic and vg
as linear combinations of the state variables, ve and #;, and the input, v(f).
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Step3  Apply network theory, such as Kirchhoff's voltage and current laws,
to obtain i¢c- and v; In terms of the state variables, ve and iy, At Node 1,

ic = —iptip
- — ;_a,,-c + iy 13.24)

which yields ic in terms of the state variables, v and i; .
Around the outer loop,

VL = —Vr + Vil) (3.25)

which yields vy in terms of the state variable, ve, and the source, v{t).

Step4  Substitute the results of Egs. (3.24) and (3.25) into Egs. (3.22) and
(3.23) to obtain the following state equations:

dvg 1 )
CF:" = ‘—EVC‘l' ir {3.26a}
LfiE = —¥ + vin (3.26b)
dr ¢ '
or
dve 1 1,
S il R_Cpc -+ Gl {3.27a)
dip a | 1
F - g + i) (3.27b)

Step 5  Find the output equation. Since the output is ip(f),
i = II_EVC (3.28)

The final result for the state-space representation is found by representing Eqs.
(3.27) and (3.28) in vector-matrix form as follows:

b i il i T e

ir=[0"'R 0] l‘:f] (3.29h)

where the dot indicates differentiation with respect to time.

In order to clarify the representation of physical systems in state space. we
will look at two more examples. The first is an electrical network with a dependent
source. Although we will follow the same procedure as in the previous preblem,
this problem will yield increased complexity in applying network analysis to find
the state equations. For the second example. we find the state-space representation
of a mechanical system.
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Example 3.2
Representing an electrical network with a dependent source
Problem Find the state and output equations ft%rr the electrical network shown in
Figure 3.6 if the output vectoris y = [m,',q-2 :',qi] , where T means transpose.’
Solution Immediatcly notice that this network has a voltage-dependent current
source.
Step 1 Label all of the branch currents on the network, as shown in Figure
3.6.
Step2  Select the state variables by listing the voltage-current relationships
for all of the energy-storage elements:
diy,
L— = .30,
o VL (3.303)
dve .
— = 3.30b
& ic ( )
From Egs. (3.30) select the state variables to be the differentiated variables.
Thus, the state variables, x; and x;, are
Xy = g X3 = V¢ (3.31)
Step3  Remembering that the form of the state equation is
x = Ax + Bu (3.32)
we see that the remaining task is to transform the right-hand side of Egs, (3.30)
into linear combinations of the state variables and input source current. Using
Kirchhoff"s voltage and current laws, we find v; and ic in terms of the state
variables and the input current source.
Around the mesh containing L and C,
Vg =vec t+vg, = v+ ig Kz (3.33)
But at Node 2, ig, = ic + 4v;. Substituting this relationship for ig, mnto Eg.
(3.33) yields
ve = ve +{ic +dvp )Ry (3.349)
Figure 3.6 C
Electrical network for Node | il Vi Node 2
I\
Example 3.2 i)
in +> |§ R, L R, 4vy(0)
fﬂ.'”{v iph g in

’See Appendix F for a discussion of the wranspose. Appendix F s on the accompanying CD-ROM.
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Solving for v, we get

vy = (ve + icky) (3.35

1
1 — 4k,

Notice that since v 1 a state variable, we only need to find /¢ in ferms of the
state variables. We will then have obtained v; In terms of the state variables.
Thus, at Node 1 we can write the sum of the currents as

ic = ) —ig, —iL

=i - Rt -t

=it)— — —1ir (3.36)

where vg, = v;. Equations (3.35) and (3.36) are two equations relating 17 and
ic in terms of the state variables iy and ve. Rewriting Egs. (3.35) and (3.30), we
obtain two simultanecus equations yielding v; and i as linear combinations
of the state variables iy and v

{l — 4R2]I.?L — Raic = v {3.37a)

—Lv_;_ — i = i — ) (3.37b)
R

Solving Egs. (3.37) simultanecusly for v and ¢ yields

vy = %[Rzl[. —¥VC Rzl(f)] (338)
and
i = l [(l — 4R}y + lvc —{1 - 4R2)i(r)] (3.39)
A K
where
R> )
A= —l{l — 4R+ = (3.40)
K

Subsututing Egs. (3.38) and (3.39) o (3.30), simplifying, and writing the
result in vector-matrix form renders the following state equation:

i | _ Rz (LA) —1/(LA) [&.]
Ve (1 — 4Ry), (CAY 1 (R, CA)|lve

n _RL' (La) . ) 341)
—(1 — 4R;) (CA) 4 (.
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Step 4 Derive the output equation. Since the specified output variables are
vi, and ig,, we note that around the mesh containing C, L, and R,,

VR, = —Vc + v {3.424)
ig, = ic +4v, (3.42b)

Substituting Egs. (3.38) and (3.39) into (3.42), vg, and ig, are obtained as linear
combinations of the state variables, i; and v In vector-matrix form, the output
equation is

] o 0+ IEL]+ ~R/A i) (343)
IR, 1A (1-4R) (AR |IVc -1 A

In the next example we find the state-space representation for a mechanical
system. It is more convenient when working with mechanical systems to obtain
the state equations directly from the equations of motion rather than from the
energy-storage elements. For example, consider an energy-storage element such
as a spring, where F = Kx. This relationship does not contain the derivative of
a physical variable as in the case of electrical networks, where i = Cdy “dt for
capacitors, and v = Ldi df for inductors. Thus, in mechanical systems we change
our selection of state variables to be the position and velocity of each point of
linearly independent motion. In the example we will see that althongh there are
three energy-storage elements, there will be four state variables: an additional
linearly independent state variable is included for the convenience of writing the
state equations. It is left to the student to show that this system yields a fourth-order
transter function if we relate the displacement of either mass to the applied force,
and a third-order transfer function if we relate the velocity of either mass to the
applied force.

Representing a translational mechanical system

Problem Find the state equations for the translational mechanical system shown
in Figure 3.7.

Solution First write the differential equations for the network in Figure 3.7, using
the methods of Chapter 2 to find the Laplace-transformed equations of motion
Next take the inverse Laplace transform of these equations, assuming zero initial
conditions, and obtan

dz.II dx. _
M|? + DE- + KI] KI2 =0 (34‘”
dzxz
—Kx + Myt + Kxy = f(0) (3.45)

Now letd?x; dr* = dv; dr, andd?x; d* = dv; dt, and then select x;, vy, %y, and
v2 as state variables. Next form two of the state equations by solving Eq. (3.44)
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Figure 3.7 {
— - | [
Tarslabonal
mectamcal system E D : K
g M 0000 M o
I S e = T b A L 1 6] - 0 D IO |
Frictionless

for dv,;dt and Eq. (3.45) for dv,: dt. Finally, add dx;, dt = vy and dx>:dt = vato
complete the set of state equations. Hence,

dx
?t' = + v (3.46a)
g __& D K
E = MIJ,] M| vy + M| X2 (346]3)
dez
E = +vy (3.46{3)
dvo, K K 1
E = + EI] szz + Ef(r) (3-46(1)
In vector-matrix form,
X1 0 [ 0 01lx; 0
bWl _|-K'M -DM KM Oy 0
2 0 0 0 1|ln|t| o @ G4D
Va K: M> 0 —-K M 0|2 1M

where the dot indicates differentiation with respect to time. What is the output
equation if the output is x(r)?

Skill-Assessment Exercise 3.1

il Problem Find the state-space representation of the electrical network shown
Salaiiss in Figure 3.8. The output is v,(f).

Figure 3.8 [ R
Electric circurt | £ AAA
for Skill-Assessment '

Exercise 3.1

A

1,{1) ’:) L C,
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Answer
1 1 —-1C 0
x=|—-1 L 0 0 X+ |1 ]|v()
1 G 0 -1 G {
y=[0 0 I1x

The complete solution 1s on the accompanying CD-ROM.

Skill-Assessment Exercise 3.2

Problem Represent the translational mechanical system shown in Figure 3.9

in state space, where x;3(¢) is the ougput.

Figure 3.9

|

—=-y 30}

=101} —l—. ra{f
Translational 1 Nim l ' 1 N-s/m 1 N/m

mechanical system 1kg } 1 kg -/UO_O_O-\- 1 kg

for Skil-Assessment —

1 N-s/m

) Juy—
Exercise 3.2

Answer 7
0
[ 0 | 0 0 0 {0 I

-1 -1 0 1 0 O

53—/ 0 0 0 1 o of |0 f

0 1 -1 -1 | 0 0

0 0 0 0 0 1
0 ¢ 0 0 -1 -1] 0
&

where
. i - - 4T
2=[x x» x XX x i3]

The complete solution is on the accompanying CD-ROM.

3.5 Converting a Transfer Function to State Space

In the last section we applied the state-space representation to electrical and me-
chanical systems. We learn how to convert a transfer function representation to a
state-space representation in this section. One advantage of the state-space rep-
resentation is that it can be used for the simulation of physical systems on the
digital computer. Thus, if we want to simulate a system that is represented by
a transfer function, we must first convert the transfer function representation to
state space.
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At first we select a set of state variables, called phase variables, where each
subsequent state variable is defined to be the derivative of the previous state vari-
able. In Chapter 5 we show how to make other choices for the state variables.

Let us begin by showing how to represent a general, nth-order, Linear differ-
ential equation with vonstant coefticients in state space in the phase-variable form.
We will then show how to apply this representation to transfer functions.

Consider the differential equation

d"}‘ dgn | y

dy
g t Oy o e+ apy = bau (3.48)

dt

A convenient way to choose state variables is to choose the output, W), and its
(rr — 1) derivatives as the state variables. This choice is called the phase-variable
choice. Choosing the state variables, x,, we get

X =V (3.49a)
d 1

X = FJ; (3.45b)
d?y

=22 (3.49¢)
dn_l

% = St (3.49d)

and difterentiating both sides yields

.y .

=2 (3.502)
) d’y

o = 4y (3.50¢)
3T e )

. d"y

— _50d
¥, . (3.50d)

where the dot above the x signifies differentiation with respeci to time.
Substituting the definitions of Egs. (3.49) into Egs. (3.50). the state equations
are evaluated as

X — x2 (3.51a)
X = x3 (3.51h)
.ifn_l = Xp (351(?)

Xp = —@pX] — G1X2 -+ — Gp_1Xn + ol (3.314d)
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where Eq. (3.51d) was obtained from Eq. (3.48) by solving for "y dt" and using
Egs. (3.49). In vector-matrix form, Egs. (3.51) become

x 6o 1 0 0 0o 0 0 x| [0
X2 0 0 | 0 0o 0 0 x 0
X3 _| 0 0 0 1 0 0 0 X3 0 !
o 0 0 0 0 0 0 1 ||x ] o
Xy ] T80 a4 —Oy —di -4y —as —8y || X by
(3.52)

Equation (3.52) is the phase-variable form of the state equations. This form is easily
recognzed by the unique pattern of 1’s and 00's and the negative of the coefficients
of the differential equation written in reverse order in the last row of the system
matrix.

Finally, since the solution to the differential equation is y(1), or x,, the output
equation is
|
X2
X3

00 - 0] (3.53)

y=1l
An—-1
Xn

In summary, then, to convert a transfer function into state equarions in phase-
variable form, we first convert the transfer functon to a differential equation by
cross-multiplying and taking the inverse Laplace transform, assuming zero initial
conditions. Then we represent the differential equation in state space in phase-
variable form. An example illustrates the process.

Example 3.4
Converting a transfer function with constant term in numerator

Problem Find the state-space representation in phase-variable form for the trans-
fer function shown in Figure 3.10(a).

Solution

Step I T'ind the associated differential equation. Since

s 24
R(s) (53 + 952 + 265 + 24)

(3.54)

cross-muttiplying vields

(s + 957 + 265 + 24)C(s) = 24R(s) (3.55)




Figure 3.10

a. Transfer funchon;
b. equva ent block
diagram shawing
phase vanahles.

hote: Wi} = ¢l
r{n

- 24 }—
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Rix) 24 Cts)
534952 + 265+ 24

e

L)

10} 1.0 yiry v

T -

26 =

24

&

The corresponding differential equation 1s found by taking the inverse Laplace
transform, assuming zero initial conditions:

'+ Y¢ + 260 + 24c = 24r (3.56)

Step2  Select the state variables.
Choosing the state variables as successive derivatives. we get

X =c (3.57a)
Xy =¢€ (3.57c)

Dhfferentiating both sides and making use of Egs. (3.57) to find x; and i, and
Eq. (3.56) to find ¢ = k3, we obtain the state equations. Since the outpur is
¢ = x3, the combined state and output eguations are

X = X2 (3.58a)
:tz = X3 (3-58‘:})
Xy = —24x; — 2605 — 93 + 247 (3.58¢)

y=c=x (3.58d)
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MATLAB

Figure 3.11
Decomposing a
transfer funchon

In vector-matrix form,

..I] 0 1 0 X1 0
i | = 0 0 1 x|+ 0|r (3.59za)
¥ -24 -26 —9||x| |24
X1
Y= ll 0 U] Xa (3-59]))
X3

Notice that the third row of the system matrix has the same coefficients as the
denominator of the transfer function but negative and in reverse order.

At this point we can create an equivalent block diagram of the system of Fig-
ure 3. 10{a) to help visualize the state variables. We draw three integral blocks as
shown in Figure 3.10(b) and label each cutpui as one of ibe state variables, x;(1),
as shown, Since the input to each integrator is x,(r), use Egs. (3.584), (3.58b), and
(3.58¢) to determine the combination of input signals to each integrator. Form and
label each input. Finally, use Eq. (3.584) to form and labe] the output, ¥{1) = cl1).
The final result of Figure 3.10() is a system equivalent to Figure 3.10(a) that
expliciily shows the state variables and gives a vivid picture of the state-space
representation.

Students who are using MATLAB should now run ch3pl through ¢h3p4 i Appencix B.
You will learn how to represent the system matrix A, the mput matrix B, and the output
matrix C using MATLAB. You will learn how to convert a transfer function to the state-space
representation in phase-vanable form. Finally, Example 3.4 will be solved using MATLAB.

The transier function of Example 3.4 has a constant term in the numerator.
If a transfer function has a polynomial in s in the numerator that is of order less
than the polynomial in the denominator, as shown in Figure 3.11(a), the numerator
and denominator can be handled separately. First separate the transfer function
into two cascaded transfer functions, as shown in Figure 3.11(b); the first is the

Ris) b232+bl.§+b0 €l
—ir] — o —
0353 + a332 t+apg+a

{a)

Riry 1 Xis) LAY
e ) 3 - L - bys? 4+ bys+ by .
uys” +apt+ags+
Internal variables:
X5(5), Xz(s)

®)
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denvminator, and the second s just the numerator. The first transfer function with
just the dencminator is converted to the phase-variable representation in state space
as demonstrated in the last example. Hence, phase variable x, is the output, and the
rest of the phase variables are the internal variables of the first block, as shown in
Figure 3.11(b). The second transfer function with just the numerator yields

Y(s) = C(5) = (b5 + bys + bg) X1(5) (3.60)
where, after taking the inverse Laplace transform with zero initial conditions,

d? dx
M) = by xl+b1 drl

But the derivarive terms are the definitions of the phase variables cbtamed 1n
the first block. Thus, writing the terms in reverse order to conform to an output
equation,

+ box (3.61)

y(f) = ng| + b|12 + bz.r3 (362)

Hence, the second block simply forms a specified linear combination of the stare
variables developed 1n the first block.

From another perspective, the denomnator of the transfer function yields the
state equations, while the numerator yields the output equation. The next example
demonstrates the process.

Converting a transfer function with polynomial in numerator

Problem Iand the state-space representation of the wansfer function shown in
Figure 3.12{a).

Solution This problem differs from Example 3.4 since the numerator has a poly-
nomial in s instead of just a constant term.

Step 1 Separate the system into two cascaded blocks, as shown in Figure
3.12(b). The first block contains the denominator, and the second block con-
tains the numerator.

Step2  Find the state equations for the block contaming the denominator.
We notice that the first block’s numerator is 1. 24 that of Example 3.4. Thus,
the state equations are the same except that this system’s input matrix is 1 24
that of Example 3.4. Hence, the state equation is

RN I S

Step3  Introduce the effect of the block with the numerator. The second
block of Figure 3.12(5), where > = 1. by = 7.and by = 2. states that

C6) = (bas? + bis + )X () = (2 + Ts + DXu(s)  (3.64)
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Kis) st+7s42 | (0
s34+9524 265+ 24
(a)
Rty 1 X% iy
- - 52+ Ts+2 -
52+ 92+ 265+ 24
Internal vanat:les:
X5(5), Xals)
()]
1
++
+
Hhn v A _1|m
o NS TEEE
O oo
26
24
{c)
Figure 3.12
a. Transter function; ] ) . .. ..
b. decomposed Taking the inverse Laplace transform with zero initial conditions, we get
' . .
transter funchion; ¢ =¥ + T +2x (3.65)
€. equivalent bloch
diagram. Note: But
Wt = ¢l
Xy =X
-i'l = X2

Rns
Il

X3
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Hence,
y=rct) = boxy + bixy + box; = x3 +7Tx3 + 21y (3.66}

Thus, the last box of Figure 3.11{(&) “collects™ the states and generates the
output equation. From Eq. (3.66),

X X1
y=I0by b bBallxf=012 7 1]|x (3.67)

X3 X3

Although the second block of Figure 3.12(#) shows differentiation, this block was
implemented without differentiation because of the partitioning that was applied to
the transfer function. The last block simply collected derivatives that were already
formed by the first block.

Once again we can produce an equivalent block diagram that vividly repre-
sents our state-space model. The first block of Figure 3. 12(#) is the same as Figure
3.10(a) except for the different constant in the numerator. Thus, in Figure 3.12(c)
we reproduce Figure 3. 10() except for the change in the numerator constant, which
appears as a change in the input multiplying factor. The second block of Figure
3.12(b) is represented using Eq. (3.66), which forms the output from a linear com-
bination of the state variables, as shown in Figure 3.12(c).

Skall-Assessment Exercise 3.3
._t--ml Problem Find the state equanons and output equation for the phase-variable
Salwlion

representation of the transfer function G(s) = —%-SL

s2+7549
Answer

0 1 0
X = [_9 _?]x + [l]r{r}

y=1[1 2Zx
The complete solution i1s on the accompanying CD-ROM.

3.6 Converting from State Space
to a Transfer Function

In Chapters 2 and 3, we have explored two methods of representing systems: the
transfer function representation and the state-space representation. In the last sec-
tion we united the two representations by converting transfer functions into state-
space representations. Now we move in the opposite direction and convert the state-
space representation into a transfer function.

Given the state and output equations

x = Ax + Bu (3.68a)
y = Cx+ Du (3.68b)
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take the Laplace transform assuming zero initial conditions:8

sX(s) = AX(s) + BU(y) (3.69a)
Y(5) = CX(s) + DU(s) (3.69H)
Solving for X(s) in Eq. (3.69a),
(sI — A)X(s) = BU(s) (3.70)
or
X(s) = (sI — Ay "BUis) 3.1)

where I is the identity matrix.
Substituting Eq. (3.71) into Eq. (3.690) vields
Y(s) = Cs1 - A) 'BU(s) + DU(s)
= [CGT - A) 'B + D]U(s) (372
We call the matrix [C(sT -~ A)" !B+ D] the transfer function matrix, since it relates

the output vector, Y(s), to the input vector, U(s). However, if U(s) = U(s) and
Y(s) = ¥(s) are scalars, we can find the transfer function.

. Ms) ]
T(s) = m = Cis«] A) B+D (3-?3)

Let us look at an example.

State-space representation to transter function

Problem Given the system defined by Egs. (3.74), find the transfer function,
T(s) = ¥(s) U(s), where U(s) is the input and ¥(5) is the output.

D 1 0 10

x={ 0 0 1|x+]| 0|lu (3.74a)
-1 -2 -3 0

y=101 0 Ok (3.74b)

Solution The solution revolves around finding the term (s1 — A)~! in Eq. (3.73)°
All other terms are already defined. Hence, first find (sI — A):

5 00 0 1 0 5 —1 L
(sI-A)=]0 s 0|- 0 0 1|l=10 = -1 (3.79)
0 0 5 —1 -2 -3 1 2 s+43

8The Laplace transform of a vector is found by taking the Laplace transform of each component.
Since X consists of the derivatives of the state variables, the Laplace transform of X with zem
wnitial conditions yields each component with the form sX,(s), where Xi(s) rs the Laplace trans-
form of the state variable. Faclorng out the complex variable, 5, m each component yields the
Laplace transform of x as £X(s), where X(s) 1s a cohumn vector with componenis X;(s).

“See Appendix F. It 1s located on the accompanying CD-ROM and discusses the evaluation of the
matrix inverse
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Now form (sI — A)~!:

(s2+3s+2) 5+3 1
[ —1 s(s+3) =
Gl Ay = MEI=A) —s ~@2s+1) 2| G709
det(sI — A) S 4+352 425+ 1

Substituting (sT — A) !, B. C. and D into Eg. (3.73). where

3

C=1[1 0 0]
D=0
we obtain the final result for the transfer function.

10(s2 + 35+ 2)

Te) = s3I +352+ 25+ 1

(3.77)

MATLAR Students who are using MATLAB should now run ¢h3p5 in Appendmx B. You will learn how to
convert a state-space representation to a transfer function using MATLAB. You can practice
by writing a MATLAB program to solve Example 3.6.

Symbolic Math | Studentswhe are performing the MATLAB exercises and want to explore the added capability
of MATLAB's Symbolic Math Toolbex shoutd now run ch3spl in Appendix E. You will learn
how to use the Symbolic Math Toolbox to write matrices and vectors. You will see that the
Symbolic Math Toolbox yields an alternative way to use MATLAE to sclve Example 3.6.

Slall-Assessment Exercise 3.4
Problem Convert the state and output equations shown in Egs. (3.78) 1o a trans-

fer function.
. -4 —1.5 2
X = [ 4 D]x + [U]u(t) {3.78a)
y = [L5 0625]x {3.78b)
35+5
Answer Gis) = T13:16

The complete solution is on the accompanying CD-ROM

In Example 3.6 the state eguations in phase-variable form were converted to
transfer functions. In Chapter 5 we will see that other forms besides the phase-
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Figure 3.13

Walking robots, such
as Hanmbal shown
here, can be used

to explora hostile
emaronments and
rough terrain, such as
that found on cther
planets or inside
volcanoes.,

Example 3.7

variable form can be used to represent a system in state space. The method of
finding the transfer function representation for these other forms is the same as that
presented in this section.

3.7 Linearization

A prime advantage of the state-space representation over the transfer tunction rep-
resentation is the ability 1o represent systems with nonlinearities, such as the one
shown in Figure 3.13. The ability to represent nonlinear systems does not imply
the ability to solve their state equations for the state variables and the output. Tech-
niques do exist for the solution of some nonlinear state equations, but this study s
beyond the scope of this course. In Appendix G on the accompanying CD-ROM,
hewever, you can see how to use the digital computer to solve state equations. This
methed also can be used for nonlinear state equations.

If we are interested in small perturbations about an equilibrium point, as we
were when we studied linearization in Chapier 2, we can also linearize the stale
equahions about the equilibrium point. The key to linearization about an equilib-
rium point is, once again, the Taylor series. In the following example we write the
state equations for a simple pendulum, showing that we can represent a nonlinear
system in state space; then we linearize the pendulum about its equilibrium point,
the vertical position with zero velocity.

Representing a nonlinear system

Problem First represent the simple pendulum shown in Figure 3.14(a) (which
could be a simple model for the leg of the robot shown in Figure 3.13) in state
space: Mg is the weight, T is an applied torque in the @ direction, and L is the
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Figurs 3.14
a. Simple pendulum;
b. force compepents

of Mg,
¢. freebody diagram

Mg cos 8 "
Mg 2] : & \
i
1
/ I
[ §
1
L~ Mgsin@ ]

b} ()

length of the pendulum. Assume the mass is evenly distributed, with the center of
mass at L 2. Then linearize the state equations about the pendulum’s equilibrium
point—the vertical position with zero angular velocity.

Solution  First draw a free-body diagram as shown in Figure 3.14(¢). Summing the
torques, we get
dQ_B Mgl .

+ ——sint =T (3.79)

J de? 2

where J is the moment of inertia of the pendulum around the point of rotation
Select the state variables x| and x» as phase variables. Letting x, = 6 and
x3 = dB dt, we write the state eguations as

X — x (3.80a)

LT
J

X — — sinx| (3.80b)

2
where x; = d?6 dt’ is evaluated from Eq. (3.79).

Thus, we have represented a nonlinear systern in state space. It is interesting to
note that the nonlinear Egs. (3.80) represent a valid and complete model of the pen-
dulum in state space even under nonzero initial conditions and even if parameters,
such as mass, are time varying. However, if we want to apply classical techniques
and convert these state equations to a transfer function, we must linearize them.

Let us proceed now to linearize the eguation about the equilibrium point, x, =
0, x> =0, that is, 8 = 0 and d0 dt = 0. Let x; and x> be perturbed about the
equilibrium point. or

x = 0+ 8x (3.81a)
xy = 0+ éx; {3.81b)
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Using Eq. (2.182), we obtain

d(smx;)

oxp = &x 3.82)
7o 1 I (

sinx; — sinQ =

from which
sinx; = 8x) (3.83)

Substituting Egs. (3.81) and (3.83) into (3.80) yields the following state equations:
&y, = (3.84a)

: Mgl T
3.1‘2 27 ox 1 + 7 (3 b]
which are linear and a good approximation 1o Egs. (3.80) for small excursions away

from the equilibrium point. What is the outpet equation?

Skill-Assessment Exercise 3.5

O Cantral Problem Represent the translational mechanical system shown in Figure 3.15
3aiztres In state space about the equilibrium displacement. The spring is nonlinear,
where the relationship between the spring force, fi(r), and the spring displace-
ment, x.(1), iS f(#) = 2¢2(7). The applied force is f(r) = 10 + & f(r), where &f()
is & small force about the 10 N constant value.
Assuime the output to be the displacement of the mass, x{f).

Figure 3,15

Nonlinear transtational Nonlinear ——= un
mechanical system spring

for SkikAssessment kg |[—-= fin)
Exercise 3.5

Answer

L B

y=11 0Ox

The complete solution is on the accompanying CD-ROM,
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Antenna Control: State-Space Representation

We have covercd the state-space representation of individual physical subsys-
terns in this chapter, In Chapter 5 we will assembile individual subsystems intp
feedback control systems and represent the emtire feedback system in state space.
Chapter 5 also shows how the state-space representation, via signal-flow dia-
grarns, can be used 1o interconnect these subsystems and permit the state-space
representation of the whole closed-loop system. In the following case study, we
look at the antenna azimuth position control system and demonstrate the concepts
of this chapter by representing ¢ach subsystem in state space.

Problemn  Find the state-space representation in phase-variable form for each
dynarnic subsystem in the amtenna azimuth position control system shown on the
front endpapers, Configuration 1. By dynamic, we mean that the systern does
not reach the steady state instantaneously. For example, a systermn described by a
differential equation of first order or higher is a dynamic systermn. A purc gain, on
the other hand, is an example of a nondynamic systermn, since the steady state is
reached instantaneously.

Soiution In the case study problem of Chapter 2, each subsysiem of the antenna
azimuth position control system was identified. We found that the power ampli-
fier and the motor and load were dynamic systems. The preamplifier and the po-
tentiometers are pure gains and so respond instantaneously. Hence, we will find
the state-space representations only of the power amplifier and of the motor and
load.

Power amplifier The transfer function of the power amplifier 1s given on the
front endpapers as G(s) = 100 (s + 100). We will convert this transfer function
to its state-space representation. Letting v,(f) represent the power amplifier input
and ¢,(f) represent the power amplifier output,

EAx) 100
) = _ 3.85
G = ve = G+ ion ==
Cross multiplying, (s + 100)E,(s) = 100¥(s), from which the differential
equation can be written as
% + 100e; = 1004,(0) (3.86)
Rearranging Eq. {3.86) leads 1o the state equanion with e, as the state variable:
de,
% = —100¢, + 1001,() (3.87)

Since the output of the power amplifier 1s ¢,(f), the output equation 18

Yy =& (3.88)

Motor and load 'We now find the state-space representation for the motor
and load. We could of course use the motor and lvad block shown in the block
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diagram on the front endpapers to obtain the result. However, it is more informa-
tive to derive the state-space representation directly from the physics of the motor
without first deriving the transfer function. The elements of the derivation were
covered in Section 2.8 but are repeated here for continuity. Starting with Kirch-
hoft's voltage equation around the armature circuit, we find

e.(f) = i, (DR, + K;,‘ifi;” (3.89)
where e,(1) is the armature input voltage, i.(f) is the armature current, R, is the
armnature resistance, Kp, is the armature constant. and @,, s the angular displace-
ment of the armature.

The torque, T,,(z), delivered by the motor is related separately 1o the arma-

ture current and the load seen by the armature. From Section 2.8,

a6, o dbn

Tm = K-a = Jm m
') AL = 4, a7 + D o

(3.90)
where J, 1s the equivalent inertia as seen by the armature. and D,, is the equiva-
Jent viscous damping as seen by the armature

Solving Eq. (3.90) for £,(f) and substituting the result into Eq. (3.89) yields

R 1, \d?6,,  [DnR, 46,
alf) = + + K | —— i
€(1) ( K, ) prd K b1 (3.91)
Defining the state variables x; and x; as
xn = 8, (3.92a)
_ d6,
Xy = pr (3.92b)
and substituting into Eq. (3.91), we get
o Rqu dX2 DmRa
e.l) = ( X, )?‘ +( K, + Kb) X3 (3.93)
Solving for dx; dt yields
da; 1 KKy K,
Using Eqgs. (3.92) and (3.94), the state equations are written as
dn
o = {3.95a}

de _ _1 (Dm + K;?Kb)xz +( Kr )e,,(t) (3.950)
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The output, 8,(r), is 1 10 the displacement of the armature, which is x;. Hence,
the output equaticn is

y = 0.1x (3.9¢6)
In vecto-matrix form,
0 1 0
X = X+ e (f) (3.97a)
0 —~(p,+ 5K K
y =101 0O]x (3.97b)

Bur from the case study problem in Chapter 2, J,, = 0.03 and D,, = 0.02. Also,
K R; = 0.0625 and K = 0.5. Substituting the values into Egs. (3.97), we
obtam the final state-space representation:

. _ |0 1 0
X = lﬂ —l.?l]x + [2.083]9““) (3.98a)

y =101 0O)x (3.98b)

Challenge You are now given a problem to test your knowledge of this chapter’s
objectives. Referring to the antenna azimuth position control system shown on
the front endpapers, find the state-space representation of each dynamic subsys-
tem. Use Configuration 2.

Pharmaceutical Drug Absorption

An advantage of state-space representation over the transfer function representa-
tion is the ability to focus on component parts of a sysiem and write 2 simultane-
ous, first-order differential equations rather than attempt to represent the system
as a single, nth-order differential equation, as we have done with the transfer
function. Also, multiple-input, multiple-output systerns can be conveniently
represented in state space. This case study dernonstrates both of these concepts.

Problem In the pharmaceutical industry we want to describe the distribution of
a drug in the body. A simple model divides the process into compartments: the
dosage, the absorption site, the blood, the peripheral compartment, and the vrine.
The rate of change of the amount of a drug in a4 compartment is equal to the input
flow rate diminished by the output flow rate. Figure 3.16 summarizes the system.
Here each x, is the amount of drug in that particular compartment (Lordi, 1972).
Represent the system n state space, where the outputs are the amounts of drug in
each compartment.

Solution The flow rate of the drug into any given compartment is proportional
to the concentration of the drug in the previeus compartment, and the fiow rate
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Figure 3.16
Phamaceuhcal drug-
level concentrations
in a human

Absorpticn
Dosage site Blood Urme
Xy - X2 —_—a X3 - X5
|
X4
Penpheral
compartment

out of a given compartment is proportional to the concentration of the drug in
its own compartment.

We now write the flow rate for each compariment. The dosage is released to
the absorption site at a rate proportional to the dosage concentration, or

&

ot == “K]X[ (3.99]

The flow into the absorption site is proportional to the concentration of the drug
at the dosage site. The flow from the absorption site into the blood is proportional
to the concentration of the drug at the absorption site. Hence,

-_— = lel - KzXz (3100)

Similarly, the net flow rate into the blood and peripheral compartment 1s

dx
_dt_3 = Kax» — Kaxz + Kyxy — Ksxa (3.101)
% = sta — K4x4 (3.]02]'

where (Kqx4 — Ksx3) is the net flow rate into the blood from the peripheral com-
partment. Finally, the amount of the drug in the urine is increased as the blood
releases the drug to the urine at a rate proportional to the concentration of the
drug in the blood. Thus,

dxs
ar 33 ( )
Equations (3.99) through (3.103) are the state equations. The output equation
is a vector that contains each of the amounts, x,. Thus, in vector-matrix form,



Figure 3.17
Aquifer system model
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[k, 0 0 0 0
Ky K 0 0O 0
X = 0 Ky —(K3+ Ks) K, 0 |x {3.1043)
D 0 Ks —X, 0
0 0 K; D OJ
1 0 0 0 0O
01 0 00
¥y=|0 0 1 0 0O|x (3.104b)
0O 001 0
0 0 0 0 ]

You may wonder how there can be a solution to these equations if there is
no nput. In Chapter 4, when we study how to solve the state equations, we will
see that initial conditions will yield solutions without forcing functions. For this
problem an initial condition on the amount of dosage, x;, will generate drg
quantities in all other compartments.

Challenge We now give you a problem to test your knowledge of this chapter’s
objectives. The problem concerns the storage of water in aquifers. The principles
are similar to those used to model pharmaceutical drug absorption.

Underground water supplies, called aquifers, are used in many areas for
agricultural, industrial, and residential purposes. An aquifer system consists of
a number of interconnected natural storage tanks. Natural water flows through the
sand and sandstone of the aquifer system, changing the water levels in the tanks
on its way to the sea. A water conservation policy can be established whereby
water is pumped between tanks to prevent its loss to the sea.

A model for the aquifer system is shown in Figure 3.17. In this model the
aquifer is represented by three tanks, with water level k; called the head. Each Gn
is the natural water flow to the sea and is propertional to the difference in head
between two adjoining tanks, or g, = G.(h, — h,_1), where G,, is a constant of
proportionality and the units of g, are m3/yr.

i) a2 Q2 43 i3

fd } 4

a3 =Gy (H—Ry)

-
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By

L
r L 1L T T

| I I |
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. I i o =" | ,_[_’_L‘_l_'_l__l'_L

o o [y w— el | | ¥ ] | -
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I
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The engneered flow consists of three components, atso measured mn m*/yr:
{1} flow from the tanks for irrigation, industry, and homes, g,,; (2) replenishing
of the tanks from wells, g;,; and (3) flow, g;,, created by the water conservation
policy to prevent loss to the sea. In this model, water for irrigation and industry
will be taken only from Tank 2 and Tank 3. Water conservation will take place
only between Tank | and Tank 2, as follows. Let H) be a reference head for Tank
1. If the water level in Tank I falls below H,. water will be pumped from Tank
2 to Tank 1 to replenish the head. If &, is higher than H,, water will be pumped
back to Tank 2 to prevent loss to the sea. Calling this flow for conservation gay,
we can say this flow is proportional to the difference between the head of Tank 1.
hy, and the reference head, H,, or g3, = G (H, — k).

The net flow into a tank is proportional to the rate of change of head in each
tank. Thus,

Crndhy; dt = gy — Gop + @nsl — Gn t Gui e — Guin—n

(Kandel, 1573).
Represent the aquifer syster in state space, where the stare variables and the
outputs are the heads of each tank.

Summary

This chapter has dealt with the state-space representation of physical systems,
which took the form of a state equation,

X = Ax + Bu (3.105)
and an output equation,
y = Cx+Du {3.106)

fort = f, and initial conditions x{rp). Vector X 1s called the state vector and con-
tains variables, called state variables. The state variables can be combined alge-
braically with the input to form the output equation, Eg. (3.106), from which any
other systemn variables can be found. State variables, which can represent phys-
ical quantities such as current or voltage, are chosen to be linearly independent.
The choice of state variables is not unique and affects how the matrices A, B, C,
and I look. We will solve the state and output equations for X and y in Chapter 4.

In this chapter transfer functions were represented in state space. The form
selected was the phase-variable form, which consists of state variables that are
successive derivatives of each other. In three-dimensional state space, the result-
ing system matrix, A, for the phase-variable representation is of the form

0 | 0
0 o 1 (3.107) :
0y a4 —az
where the g;’s are the coefficients of the characteristic polynomial or denominator

of the system transfer function. We also discussed how to convert frorn a state-
space representation to a transfer function.
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In conclusion, then, for linear, time-invariant systems, the state-space repre-
sentation is simply another way of mathematically modeling them. One ma-
jor advantage of applying the state-space representation to such linear systems
is that it allows computer simulation. Programming the systemn on the digital
computer and watching the system’s response is an invaluable analysis and de-
sign tool. Simulation is covered in Appendix G on the accompanying CD-ROM.

Review Questions

1. Give two reasons for modeling systems in state space.

2. State an advantage of the transfer function approach over the state-space
approach.

3. Define state variables.

4. Define state.

5. Define state vector.

6. Dcfine state space.

7. What is required to represent a system in state space?

8. An eighth-order system would be represented in state space with how many
state equations?

9. If the state equations are a systern of first-crder differential equations whose
solution yields the siate variables, then the output equation performs what
function?

10. What is meant by linear independence?
11. What factors influence the choice of state variables in any system?
12. What is a convenient choice of state variables for electrical networks?

13. If an electrical network has three energy-storage elements, 1s it possible to
have a state-space representation with more than three state variables?
Explain.

14. What 1s meant by the phase-vaniable form of the state-equation?

Problems

1. Represent the electrical network shown in Figure P3.1 in state space, where
Vp(£V is the outpul.

Figure P3.1

— 1,

\_¥

il (_
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2. Represent the electrical network shown in Figure P3.2 in state space, where

ig(1) 15 the output.
Figure P3.2 1@ . 1H
1N CD IF = 4y 14} tp(f)
Y
- Control A. Find the state-space representation of the network shown in Figure P3.3 if
AL the output is v (7).
Figura P3.3 14}
iHin -:3
_/m\ [ £
I\
1H 1F
+
(D (’_’D [\ p— qu 1Q > vin
Y
4] ta(f)

4. Represent the system shown in Figure P3.4 in state space where the output

is I3(f).
Figure P3.4 o
— - —i
fi,=1 N-sim :
l
[ 1 I
] M.—1kg
g ‘ﬁ"-i: 1 N—Sf'm__\_-“ ‘.—.—.‘_ﬁl’= 1 N-s/m
7 |
i k=1 Ns/m fu,= E Ns/m
o I Ml =1 l{g Mz =1 kg _-"r“}
= = — 0000 —
£=1N/m
S B T ]

Frictionless -~

S ST S T
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8. Represent the translational mechanical system shown in Figure P3.5 in state
Figre P35 space. where x;{f) is the output.

i)

f“‘u = 1 N-sfm

My=1kg fv,= | Nesim

S s

K;=1N/m

ftn

Ml=lkg

6. Represent the rotational mechanical systermn shown in Figure P3.6 in state
space, where 6,(¢) is the output.

Figurs P3.6 ) By)

%QO 1 kgm? HN.=|Q
Ny = 100 }—/_O_O_O_O_\—O 100 kg-m? )—_

100 N-rmmfrad 100 N-m-sfrad

7. Represent the sysiem shown in Figure P3.7 in state space where the output is

6; (1.
Figure P3.7 Tin
( Al
Nl = “)
\ 2 N-m#rad 3 N-m-ssrad
! v, =200 (000 | N3=10
— N-mirad L
10 3 G0
Ny= 100} l

200 N-m-/rad tj
b=
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Figure P3.8

MATLAD

Figure P3.9

MATLAB

8. Show that the system of Figure 3.7 in the text yields a fourth-order transfer
function if we relate the displacement of either mass to the applied force, and
a third-order one if we relate the velocity of either mass to the applied
force.

9. Find the state-space representation in phase-variable form for each of the
systems shown in Figure P3.8.

R(s) 100 C(s)
s 20534+ 10524+ T+ 100

{a)
R(s) 30 C(s)
i
SR 95+ 652+ 5+ 30
)

10. Repeat Problemn 9 using MATLAB.

11. For each system shown in Figure P3.9, write the state equations and the
output equation for the phase-variable representation.

R(s) N 55410 C(s)
A2 +52+55+ 10

(a)

R(s) 544253412524+ 75+ 3 C(s)
534+ 9544 1053 + 842

&

12. Repeat Problem 11 using MATLAB

13. Represent the followmng transfer function in state space. Give your answer in
vector-matrix form,

(2 +35+7
(s + (52 + 55 + 4)

T(s) =



. (Illl'l-ll

MATLAB

Symbolic Math

m Loafral
= Solelion

14,

17.
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Find the transfer function G(s) = Y(s) R(s) for each of the following
systems represented in state space:

0 0 0
a. X=| 0 1|x+| Ofr
-3 5 10
y=11 0 O
2 3 -8 1
b. x=| 0O 5 IIx+|4|r
-3 -5 —4 6
y=[1 3 06)x
3 -5 2 5
C. x=| 1 —8B T7|x+|-3|r
-3 -6 2 2
y=[1 -4 3x

Use MATLAB to find the transfer function, Gls) =
systemns represented in state space:

Y(s)/ R{s), for each of the following

o 1 3 o]l Jo
|0 o 1 oI5
¥ *“lo o o 1I*|s|
7 -9 -2 _3 2
=1 3 4 6lx
31 0 4 -2] |[Z]
-3 5 -5 2 -1 7
b. x-| 01 -1 2 8lx+|e|r
76 -3 -4 0 5
-6 0 4 -3 1] |4
y=I -2 -9 7 6x

. Repeat Preblem 15 using MATLAB, the Symbobc Math Toolbox, and Eq. (3.73).

Gyros are used on space vehicles, aircraft, and ships for inertial navigation
The gyro shown in Figure P3.10 is a rate gyro resirained by springs con-
nected between the inner gimbal and the outer gimbal (frame) as shown. A
rotational rate about the z-axis causes the rotating disk to precess about the
x-axis. Hence, the input is a rotational rate about the z-axis, and the cutput is
an angular displacement about the x-axis. Since the outer gimbal is secured
to the vehicle, the displacement about the x-axis is a measure of the vehicle's
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angular rate about the z-axis. The equation of motion is

2
d 6. 9 | ke, - "“’%

Iege +0g

Represent the gyro in state space.

Figure P3.10
Gyro system

/ Spring

Bearing

Inner gimbal \\

Beanng

Frame

18. A missile in flight, as shown in Figure P3.11, is subject to several forces:
thrust, lift, drag, and gravity. The missile flies at an angle of attack, «, from

Figure P3.11
Missile ¢,..»—"'

-+ Vertical

Velocity
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its longitudinal axss, creating lift. For steermg, the body angle from vertical,
¢, is controlled by rotating the engine at the tail. The transfer function relat-
ing the body angle, ¢, to the angular displacement, 8, of the engine is of the
form

D(s) - K5+ K,
o(s) K353 + Kas? + Kis + Ky

Represent the missile steering control in state space.

19. Given the dc servomotor and load shown in Figure P3.12, represent the
system in state space, where the state variables are the armature current, 1,,,
load displacement, 67, and load angular velocity, e, . Assume that the output
is the angular displacement of the armature. Do not neglect armature
inductance.

Figure P312
Motor and load
Dy
2(. Consider the mechamcal sysiem of Figure P3.13. If the spring is nonlinear,
and the force, F, required to stretch the spring is F; = 2x7, represent the
system in state space linearized about x; = 1 if the output is x;.
i [ I
Flgulre P3.13 - (1) —
Honlinear mecharical F.=2x2N % L N-s/m ||
tem 1
y: I kg | kg [— = fi)

D Cantrol 21. Image-based homing for robots can be implemented by generating heading
LU commang inputs to a steering system based on the following guidance algo-
rithm. Suppose the robot, shown in Figure P3.14(a) is to go from point R to
a target, point 7, as shown in Figure P3.14(b). If R,, R,, and R, are vectors
from the robot to each landmark, X, ¥, Z, respectively, and Ty, T,, and T
are vectors from the target to each landmark, respectively, then heading
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= Sphencal
mirror

Camera

(a)

Heading Heading Controller Steenng Wheels Wheel Vehicle Aciual

command EITOT command angle heading
+ Kiis+a) L 1
— ] —ed — - — -
(s +b) S+c ¥
()

Figure P2.14
a. Robot with commands would drive the robot to minimize R, — T,, R, - T,, and R. — T;
television Imaging simultaneously, since the differences will be zere when the robot arrives at
system t©1992 IEEE); the target (Hong, 1992). If Figure P3.14(c) represents the control system that
b. vector diagram steers the robot. represent each block—the controller. wheels, and vehicle—
showing concept in state space.

betind image based
homing (€1992 IEEE);
<. heading control
Systemn

22, Given the F4-E military aircraft shown m Figure P3.15(«), where normal
acceleration, «,,, and pitch rate, ¢, are controlled by elevator deflection, 8,,
on the horizontal stabilizers and by canard deflection. 8,. A commanded
detlection, 8., as shown in Figure P3.15(b), 1s used to effect a change in
both &, and &,.. The relationships are

84 17
Scomls) s+1°7
S5} . Kc, T

Beom(s) Ts+l7



SCL‘T'I'I[ i

Figure P3.15

a. F4-£ with canards
21992 AlAA),

b. operHoop flight
contrel system
@1992 AlAA)
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Honzontal Elevator {5,)

(a)
6“ “n
Aarcraft
liz longnudinal
s+Ur dynamics
O Lsh
K, — —
()]
These deflections yield, via the aircraft longiudinal dynamics, a, and g. The
state equations describing the effect of 8o On ¢, and g is given by (Cavallo,
1902)
€n —1.702 50.72 26338 ||u, —272.06
gl=1 022 -1418 -31.99||g|+| O |&om
5. 0 0 —14 || &, 14
Find the following transfer functions:
AnlS)
Gy (s) =
1(8) 5o (5)
Qis)
Gis) = ——
2s Scom(5)
23. Modern rebotic mampulaters that act directly upon their target environments

must be controlled so that impact forces as well as steady-state forces do
not damage the targets. At the same time, the manipulator must provide
sufficient force to perform the task. In order to develop a control system to
regulate these forces, the robotic manipulator and target environment must
be medeled. Assuming the model shown in Figure P3.16, represent in state
space
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Figure P3.16
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the manipulator and its envirenment under the following conditions (Chiu,
1997):

a. The manipularor 1s not in contact with 1ts target environment.

b. The manipulator is in constant contact with its target environment.

Progressive Analysis and Design Problem

24. High-speed rail pantograph. A translational mechanical system model for a
high-speed rail pantograph, used to supply electricity to a train from an overhead
catenary. is shown in Figure P2.35(b) (O” Coenner, 1997). Represent the pantograph
In state space, where the outpui is the displacement of the top of the pantograph,
vh(n - J"‘(‘a!(r)
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